Similar case studies

REF impact found 16 Case Studies

Currently displayed text from case study:

Supporting e2v Ltd. in developing capability as a supplier for major space science missions

Summary of the impact

Research conducted within the Department of Space and Climate Physics at UCL has had a significant impact upon e2v Ltd., a manufacturer of charge-coupled devices (CCDs). Through working collaboratively with e2v, UCL has helped the company to secure major contracts and business [text removed for publication]. This includes two contracts for the supply of CCDs for the European Space Agency (ESA) missions Gaia (€20 million) and Euclid (€10 million). Furthermore, the symbiotic relationship has contributed to the establishment of e2v as Europe's leading supplier of high-quality CCDs for space science applications and has underpinned an improved understanding of device design and optimisation within the company.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Advances in Gamma-Ray Detection and Imaging

Summary of the impact

The University of Southampton's distinguished body of work on the design of technology for gamma-ray detection and imaging has informed new counter-terrorism practices. Technological advances arising from the research have been crucial to delivering significant benefits in the fields of homeland security and nuclear safety — the latter particularly in the wake of the 2011 Fukushima disaster. A spin-out company, Symetrica, currently employs 26 people in the UK and the USA, has a forecast turnover of more than £10 million for 2013-14 and has been recognised as an example of best practice. It is a technological leader in the field of radioactive isotope identification.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Giving Medicine a Better Image with Wafer-scale CMOS Imagers

Summary of the impact

Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]

This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.

Submitting Institution

University of Lincoln

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing

Giving Medicine a Better Image with Wafer-scale CMOS Imagers

Summary of the impact

Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]

This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.

Submitting Institution

University of Lincoln

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Gene Sequencing on silicon: the Ion Torrent Personal Genome Machine

Summary of the impact

The development of microelectronic sensor arrays for biological applications, pioneered at the University of Glasgow, is central to a unique gene sequencing system developed by Ion Torrent. The Ion Torrent personal genome machine is a bench-top system that, compared to optically mediated technologies, is cheaper and easier to use. Ion Torrent was founded in 2007 and bought by Life Technologies in 2010 for $725M; they, in turn, were bought by Thermo Fisher for $13Bn, citing Ion Torrent as a motivation. Ion Torrent now has 62% of the bench-top sequencing market, estimated to be worth $1.3Bn in 2012.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Medipix - High Energy Physics collaborators deliver technological breakthrough behind world’s most advanced X-ray detector

Summary of the impact

Medipix-based detectors are the best pixelated X-ray detectors available on the market and are commercialised by PANalytical under the brand name PIXcel. At the core of PIXcel is the Medipix2 chip, which was developed around a photon counting breakthrough conceived by the Medipix collaboration and is unique in its adaptability, high spatial resolution, high dynamic range and low noise. This product is the direct result of an exclusive license and a collaboration agreement between PANalytical and the Medipix collaboration, coordinated by CERN and comprising a further sixteen leading physics research institutes in Europe. The University of Glasgow is the only UK institution to be one of the four founding members of the Medipix1 collaboration.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing

The development and exploitation of Terahertz technology

Summary of the impact

The development by Cambridge University staff of compact semiconductor sources and detectors of Terahertz radiation has opened up this part of the electromagnetic spectrum to commercial use for the first time, enabling many applications. In medicine these applications include the analysis of drugs and the detection and imaging of cancer; in security applications the detection and imaging of explosives; and in the semiconductor industry the detection and imaging of buried defects in semiconductor wafers. High power Terahertz lasers are used in gas sensors, for imaging and as local oscillators. This technology has been exploited by a spin-off company TeraView which has 25 employees, has raised £16M in funding, £3.5M since 2008, and has sold 70 imaging systems, half since 2008 at an average cost of $300K each.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

From space science to medicine; the application of novel sensor technologies in healthcare

Summary of the impact

Space science and medicine share a fundamental requirement for radiation sensors of the highest possible sensitivity. The development of imaging detectors for major X-ray observatories such as the European XMM-Newton and NASA's Chandra provided the impetus for a broad-based, intensive programme of deliberate technology transfer from the Unit's Space Research Centre (SRC) into the life sciences and medicine. The resulting impact now extends far beyond the exploratory provision of prototype sensor technologies for biomedical researchers into the full-scale commercial exploitation of those technologies with industry partners in the UK and Europe and, in three separate cases, to early-stage patient trials. Impact is being delivered in clinical specialisms from oncology to ophthalmology; from neurotoxicology to emergency medicine. The impact delivery mechanisms — the hospital-based Diagnostics Development Unit (DDU) and the campus-based Bioimaging Unit — are themselves novel and have achieved national prominence as examples of best practice in the drive for economic return even from established blue skies research.

Submitting Institution

University of Leicester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences

Advanced Radiometer Instrumentation for Earth Observation

Summary of the impact

Research on Frequency Selective Surface (FSS) structures has led to major advances in the design and manufacture of the world's most advanced payload instrumentation for use in Earth observation satellites. This technology has provided the core element of the radiometer instrumentation needed for more accurate global weather forecasts and better understanding of climate change. The advances described have made it possible to combine all of the different functions of the MetOP-SG radiometer into one instrument, thereby halving the footprint of the satellite payload resulting in a [text removed for publication] cost saving.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Next-Generation Airport Baggage Scanners Revolutionising Passenger Security Checks

Summary of the impact

Radiation physicists at the University of Surrey developed a unique X-ray imaging technology for high-speed real-time tomography (RTT) during 1997 to 2005. The originating research developed new X-ray methods for tomographic imaging of multiphase flow in pipes. RTT was then applied to security X-ray imaging, specifically the high-speed screening of aircraft passenger baggage. As a direct result of the research, a spin-out company from the University, CXR Ltd, was formed, and it was later acquired by Rapiscan Systems.

Surrey's imaging technology is now approved for use for automated explosives detection in the European aviation sector. In 2009, a prototype high-speed baggage system was trialled at Manchester Airport, which resulted in certification in 2012. The research has made a significant economic impact by leading to technology that created jobs in a purpose-built factory.

Submitting Institution

University of Surrey

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies