Similar case studies

REF impact found 42 Case Studies

Currently displayed text from case study:

The development and exploitation of Terahertz technology

Summary of the impact

The development by Cambridge University staff of compact semiconductor sources and detectors of Terahertz radiation has opened up this part of the electromagnetic spectrum to commercial use for the first time, enabling many applications. In medicine these applications include the analysis of drugs and the detection and imaging of cancer; in security applications the detection and imaging of explosives; and in the semiconductor industry the detection and imaging of buried defects in semiconductor wafers. High power Terahertz lasers are used in gas sensors, for imaging and as local oscillators. This technology has been exploited by a spin-off company TeraView which has 25 employees, has raised £16M in funding, £3.5M since 2008, and has sold 70 imaging systems, half since 2008 at an average cost of $300K each.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Hitachi

Summary of the impact

Research in the Microelectronics Group of the Cavendish Laboratory in the area of single-electron nanoelectronics, quantum computing and spintronics has been exploited by Hitachi, one of world's leading microelectronics companies. Research breakthroughs made in the Cavendish have defined Hitachi's R&D directions in quantum computing and spintronics, led to several Hitachi product developments and influenced senior Hitachi strategic decision makers regarding the future of computing.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Engineering: Materials Engineering

Economic success of spin-out company Ossila Ltd.

Summary of the impact

The company Ossila Ltd has developed a range of products targeted at developers of organic electronic devices, with products based on know-how derived from research within the Soft Matter Physics (SMP) group in the Department of Physics and Astronomy. The company also supplies research-based services to technical markets around the world. Since its establishment in 2010, the company has grown organically, and now has a growing revenue stream that makes it a sustainable profit-making entity, with 85% of its products sold to overseas markets. The company enjoys rapid growth and currently employs 10 people (~7 FTE equivalent). Ossila's financial turn-over has increased by between 50-100% annually, [text removed for publication].

Submitting Institution

University of Sheffield

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Technology: Nanotechnology

Toshiba semiconductor quantum photonics

Summary of the impact

The development of Molecular Beam Epitaxial (MBE) growth techniques for self-assembled quantum dots at Cambridge University has led to the creation of electrically driven, compact single-photon and entangled-photon sources, and their demonstration in quantum key distribution (QKD) systems. This highly-cited work has led to significant recent investment in R&D in this area by Toshiba, one of the world's leading microelectronics companies, influencing company policy to the highest levels. It has stimulated world-wide interest in quantum information technology, in government institutions and companies from start-ups and SMEs to multinationals.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Quantum Physics

Cavendish Kinetics

Summary of the impact

University of Cambridge research led to the creation of spin-out company, Cavendish Kinetics which developed a micro electro mechanical (MEMS) process technology that allows MEMS devices to be fabricated in a standard silicon foundry. The company is now producing RF MEMS technology for mobile phone applications allowing faster data transfer and lower power consumption. It initially developed a non-volatile memory product for harsh environments. The company has provided more than 350 person years of highly skilled employment (of which 140 person years are within the period) at offices in the US, UK, the Netherlands, and Korea. It has developed a large patent portfolio and raised tens of millions of US dollars in VC funding.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering, Electrical and Electronic Engineering, Materials Engineering

Raman thermography – Enabling semiconductor companies to improve the reliability, performance and lifetimes of their devices

Summary of the impact

Raman thermography, a new technique for measuring channel temperature in semiconductor electronic devices developed at the University of Bristol, has been used by many companies to characterise their semiconductor devices. The technology has enabled companies to develop more robust, reliable, higher performing devices and circuits for high-end space, radar, communication and power conversion applications. This is illustrated here in detail on the example of the company, United Monolithic Semiconductor (UMS) (Germany-France), which used the technique to improve the lifetime of its Gallium Nitride (GaN) and Gallium Arsenide (GaAs) semiconductor devices so that they meet customer requirements for product qualification. Corresponding impact resulted for the companies TriQuint (USA), Northrup Grumman (USA), QinetiQ (UK), Selex Galileo (UK & Italy), NXP (UK & Netherlands), Thales Alenia Spaciale (France), Sharp (Japan) and Hitachi Cable (Japan).

Submitting Institution

University of Bristol

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Nanotechnology

Commercial exploitation of strained semiconductor alloys in communications, energy efficiency and consumer electronics

Summary of the impact

Surrey's Photonics Group has played a pivotal role in understanding and developing compound semiconductors for use in photonic devices. The strained-layer quantum well technology proposed and developed in their research is now incorporated in the vast majority of CD, DVD and blu-ray systems, in telecommunications and the internet, in computer mice, and in LEDs for solid-state lighting. Strained-layer quantum well lasers are manufactured by industry in their millions annually with a market value estimated in 2009 to be €15bn. Compared to the alternatives; these lasers offer greater efficiency, which has opened up new applications.

The Group's research has expanded to develop semiconductors for use in energy generation and combatting climate change, and in novel photovoltaics, low energy internet communications, and greenhouse gas detection. The research has led to engagement with the UK government's energy minister and has stimulated public discussion around the world.

Submitting Institution

University of Surrey

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Nanotechnology

High-efficiency low-cost LEDs

Summary of the impact

Research on the growth of gallium nitride (GaN) light-emitting diode (LED) structures has led to the creation of two spin-out businesses (subsequently sold), has assisted Forge Europa Ltd in expanding its sales of LED-lighting products, has helped AIXTRON to achieve sales of related GaN-growth equipment [text removed for publication], & has enabled Plessey Semiconductors Ltd to manufacture the world's first commercially available LEDs on 6-inch Si (& the first LEDs to be manufactured in the UK).

Submitting Institution

University of Cambridge

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Engineering: Materials Engineering

Molecular Beam Epitaxy applied to quantum devices for industrial applications

Summary of the impact

This University of Manchester research underpins UK industry's global position in millimetre- wave imaging and ultra-high-precision sensing. These are key technologies in a range of industrial, medical and consumer electronics applications. The devices and methods developed by the research team are now used by a range of companies leading to economic impacts for the UK in strong export markets. In this case study we provide examples of impacts that support commercial sales in excess of £300m by UK SME and FTSE-listed companies in three sectors: automotive radar (e2v), terahertz imaging (TeraView), and linear encoders (Renishaw PLC).

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Engineering: Materials Engineering

Large semiconductor crystals for security and medical imaging (Kromek)

Summary of the impact

Research on vapour growth of semiconductor compounds led to a key breakthrough in growing large crystals which form the basis for sensitive X-and gamma-ray detectors. The process was commercialised by a Durham University spin-out company, Kromek Ltd., which floated on AIM at £55M and has over 100 employees in the UK and USA. The X-ray detectors are in use in Kromek's security systems for screening liquids at airports, significantly reducing restrictions on duty free goods. This application won the $400,000 international prize in the 2009 Global Security Challenge. The company also markets gamma-ray detectors for nuclear isotope identification. These have won contracts totalling $7.5M from the US Defense Threat Reduction Agency and are in use at Fukushima.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies