Log in
LSE philosophers have encouraged the Dutch Government to approach sustainability and climate change through experimenting with behavioural policies (rather than through regulation and taxation) and through scenario-based planning (rather than through probabilistic approaches). LSE research on behavioral policies is reflected in a key recommendation to Government by the Dutch Council for the Environment and Infrastructure (RLI) which has affected the way in which behavioural policies concerning sustainability enter the public debate in the Netherlands. LSE research on scenario-based planning is reflected in the Royal Netherlands Meteorological Institute [KNMI] Advisory Board Report entitled "Towards the KNMI's13 Scenarios". The Delta Programme, which is geared towards climate change adaptation (flooding and freshwater) in the Dutch lowlands, has incorporated this scenario-based approach in their planning.
A novel approach to climate science has resulted in over 260,000 members of the public worldwide choosing to engage in a climate modelling project. By contributing resources that require their time and attention, they have become `citizen scientists'. The project has resulted in greater interest, understanding and engagement with climate science by participants; wider public discussion of climate science; and influence on policy and practice. Over 3000 people, including professionals in developing countries, have benefitted through education and training. The project has also advanced the development and awareness of `volunteer computing'.
Climate change is one of the defining challenges of our time. The net costs of climate change in the UK could be tens of billions of pounds per year in the 2050s, and tidal flooding alone could affect over half a million UK properties by 2100. Dr Jonathan Rougier worked with the UK Met Office (UKMO) to produce the climate scenarios for the UK Climate Impacts Programme (UKCIP) 2009 report (UKCP09). His research and advice (funded as a UKMO External Expert) was critical in a key innovation in the UKCP09: a comprehensive uncertainty assessment. A Director of the UKCIP writes "The UKMO team with Dr Rougier [have] put the UK at the leading edge of the science and service aspects of providing climate information for users" [b].
The UKCP09 formed the basis of the UK Climate Change Risk Assessment and the recommendations of the UK National Adaptation Programme, which was submitted to Parliament as part of the Government's obligations under the Climate Change Act. The UKCP09 has been used for the assessment of the impact of climate change by hundreds of organisations, including agencies and non-governmental organisations (NGOs), utilities companies, consultancies, and County Councils and Local Authorities.
University of Southampton research has been crucial in informing and stimulating worldwide debate on geoengineering — the possible large-scale intervention in the Earth's climate system in order to avoid dangerous climate change. Climate modellers at Southampton helped to reveal the potential extent of the fossil fuel "hangover" — the long-term damaging effects expected from anthropogenic CO2 emissions centuries or even millennia after they end. This work led Professor John Shepherd FRS to initiate and chair a Royal Society study, whose 2009 report, Geoengineering the Climate: Science, government and uncertainty, is the global benchmark document on geoengineering strategies, influencing UK and foreign government policy.
The United Kingdom is today better adapted to climate risks as a result of a sustained programme of research completed by the School into the impacts of climate change on ecological, social and infrastructural systems. This work has had significant and continuing impact on the design and implementation of UK (and international) climate adaptation strategies and policies, especially with regard to flooding, the built environment and water and coastal management. Decision-support tools (such as climate scenarios and options appraisal) and direct policy advice produced by the School have been used by numerous public and private sector organisations to inform and guide their adaptation strategies and investments.
A novel large-area process-based crop simulation model developed at the University of Reading and published in 2004 has been used to explore how climate change may affect crop production and global food security. The results of Reading's modelling work have been used as evidence to support the case for action on climate change for international agreements and used by the UK Government to inform various areas of policy and, in particular, to help frame its position on climate change at international negotiations. The database and knowledge from this model also informed the development of Reading's innovative web-based tool that locates sites where the climate today is similar to the projected climate in another location - providing insight into potential adaptation practices for crop production in the future by linking to present-day examples. This tool has been used to inform and train farmers and policy-makers in developing countries and has supported policy implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture.
Exeter's Centre for Energy and the Environment has created novel probabilistic weather files for 50 locations across the UK, consisting of hourly weather conditions over a year, which have been used by the construction industry to test resilience of building designs to climate change. They have already had significant economic impact through their use in more than £3bn worth of infrastructure projects, for example, Great Ormond Street Hospital, Leeds Arena, and the Zero Carbon Passivhaus School. The weather files are widely available to professionals and endorsed by internationally leading building simulation software providers such as Integrated Environmental Solutions.
The Climate Change Act, 2008, constructed a legally-binding long-term framework for the UK to cut greenhouse gas emissions and a framework for building the UK's ability to adapt to a changing climate. The Act requires a UK-wide climate change risk assessment (CCRA) that must take place every five years and a national adaptation programme (NAP), setting out the Government's objectives, proposals and policies for responding to the risks identified in the CCRA. The CCRA, and thus the NAP, drew heavily on the uncertainty analysis for future climate outcomes, published in 2009 by the Met Office as the UK Climate Projections UKCP09, which in turn drew heavily on research into the Bayesian analysis of uncertainty for physical systems modelled by computer simulators carried out at Durham University. A wide range of industries and public sector organisations likely to be affected by climate change have consulted with the Met Office on UKCP09 to inform decisions on policy and investment, involving billions of pounds, in sectors as diverse as flood defence, transport, energy supply and tourism.
The US government's announcement of an increase in the `social cost of carbon' (SCC) from $24 to $38 a tonne has been made on the basis of research by Richard Tol, of the University of Sussex. Regulation based on the new SCC (a measure of the damage of releasing an additional tonne of carbon into the atmosphere) initially applies to microwave ovens, where it is anticipated to save US consumers billions on their energy bills over coming decades and prevent 38 million tonnes of CO2 emissions. From June 2013, the new SCC applies to any new or revised regulation by any branch of the US government and will eventually affect a wide range of products and investments, including cars, white goods and power plants.
Tol, who works as an adviser to the US Environmental Protection Agency (EPA), has been instrumental in helping the agency to understand the economic impacts of climate change and the methods and assumptions that underpin SCC estimates. The US government's estimates of the SCC are widely used by other decision-makers in the private sector, banks and NGOs and in other countries.
UK upland peatlands constitute the world's greatest area of blanket bog, an endangered biome, and are the UK's largest natural habitat, carbon store, and pure water resource. The multi-institutional project "Climate Change Impacts on UK Upland Soils" identified models to predict the response of blanket bog to climatic and environmental changes and drew the attention of diverse stakeholders to the challenge of conserving these peatlands in a warming climate. The results have had impact on public policy and the environment by stimulating and informing debate. Since 2011, they have been (i) used by local and national agencies such as the Forestry Commission, (ii) included in the UK Climate Change Risk Assessment, (iii) cited by the International Union for Conservation of Nature (IUCN) Commission of Enquiry on Peatlands, and (iv) used in evidence for policy making by Defra and the Scottish Parliament.