Similar case studies

REF impact found 4 Case Studies

Currently displayed text from case study:

Eliminating Death from Heart Failure in Thalassaemia Major Using T2* Cardiovascular Magnetic Resonance

Summary of the impact

The development of a cardiac magnetic resonance technique at Imperial College and Royal Brompton Hospital to quantify myocardial iron concentration has resulted in the early identification of thalassaemia major patients at risk of heart failure and targeted cardiac treatment with a hitherto little used iron chelator, deferiprone, following randomised controlled trials of efficacy. Since 2008 these advances have resulted in a 71% reduction in cardiac death from myocardial siderosis in thalassemia major in the UK.

Submitting Institution

Imperial College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences

Iron Chelators and Hepcidin Analogues for Therapeutic Use

Summary of the impact

Use of the iron chelator drug deferiprone — first developed by researchers at King's College London (KCL) — has extended the lives of thalassaemia patients and is of great utility for those with cardiac problems as it can remove excess iron from the heart. For this reason deferiprone has more recently gained United States approval. KCL researchers have also developed methods for the synthesis and analysis of markers of iron chelation therapy that are being utilised in clinical trials by Novartis Pharmaceuticals and Vifor Pharma and by clinicians. Several neurodegenerative diseases are associated with elevated brain iron levels and the use of deferiprone is also being investigated in clinical trials by ApoPharma and hospitals in the UK and France.

Submitting Institution

King's College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

New treatment and treatment monitoring for iron overload in thalassaemia patients

Summary of the impact

The iron and red cell disorders group at UCL has worked for over 20 years on the pathophysiology of transfusion-dependent iron overload in thalassaemia patients, using models of iron uptake and overload and translating these into clinical practice. In collaboration with Novartis, a new treatment, deferasirox, was developed, which is now the treatment of choice for iron overload in the western world. In addition, a method for monitoring iron overload in the heart was developed in collaboration with Dr Pennell at the Brompton and pioneered in patients at UCL Hospital (UCLH) and the Whittington Hospital. This has become the standard approach worldwide.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences, Pharmacology and Pharmaceutical Sciences

Mary Rose : Protecting our Heritage through Chemistry

Summary of the impact

The warship Mary Rose served Henry VIII's navy for 34 years, including spells as the flagship. She sank while engaging the French navy in the Solent in 1545, and unsuccessful salvage bids meant the ship remained on the seabed for almost half a millennium. The University of Kent has been the central academic partner of the 30-year and £35 million Mary Rose salvage and conservation project. It received Heritage Lottery funds, which the University of Kent used to develop new conservation chemistry, underpinned by synchrotron studies. Kent researchers have subsequently taken up permanent employment with the Mary Rose Trust to implement this new technology. The Mary Rose exhibition opened at Portsmouth Historic Dockyard in May 2013, is one of the most important additions to UK culture in recent times. The research at Kent was critical to this achievement, and the new chemical technology is subsequently finding new areas of impact.

Submitting Institution

University of Kent

Unit of Assessment

Chemistry

Summary Impact Type

Cultural

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry, Other Chemical Sciences
Earth Sciences: Geochemistry

Filter Impact Case Studies

Download Impact Case Studies