Log in
A unique UK national capability for large optics manufacture and associated technologies has been exploited. This case study describes the benefits realised from research into high precision surface-removal processes plus metrology, applied to large area functional surfaces producing precisions down to nanometres. Research into metrology for optical manufacturing, into increasing the dynamic range of a CNC polishing machine and into the issues associated with scaling up from prototype to commercial mass production of large off-axis aspheric mirror-segments for future extremely large telescopes has made a significant contribution to the progress of the ESO European Extremely Large Telescope project and has brought commercial benefits to Zeeko Ltd.
The UltraMill machine was developed at Brunel University in 2008, in collaboration with Ultra Precision Motion (UPM) Ltd, to help support UK and European manufacturing SMEs in high value manufacturing sectors, particularly in ultra-precision and micro manufacturing. The machine has a novel design and the sub-systems and machine elements have a number of technological innovations. Two international patents have been granted to protect the IP within the machine. A surface roughness of 4-6 nm was micro-milled on non-ferrous metal components by the UltraMill in 2008, which at the time was the finest engineering surface achieved by ultra-precision micro-milling in the world.
A licence agreement was signed with ITP Group (UK) in 2012 for the commercial production of the UltraMill. This was ITP's first entry into the high-precision milling market. ITP realigned their production systems to begin manufacturing the UltraMill in late 2012 and have manufactured 3 machines to date.
Contour Fine Tooling, which leads the worldwide market in the field of diamond cutting tools, was inspired by the UltraMill, and developed the first diamond micro-milling tool in the world. The UltraMill was used to test the tool's capabilities and feasibility; the new tool has since been successfully sold. It is now being used to manufacture a number of high-value products. In particular it is used by Apple to produce the bevelled edges of the iPhone 5S. Apple currently manufactures 150,000 iPhone 5S units per day.
Research in machine virtualisation conducted in the Cambridge Computer Laboratory from 1999 onwards provides the basis for much of the present day Cloud.
Xen is a virtual machine monitor that supports execution of multiple guest operating systems consuming little overhead and providing resource isolation. This was prototyped in the Laboratory and led to XenSource, a spin-out company, which was founded in 2005. XenSource was acquired in 2007 by Citrix Systems for US$500M, and products that were launched from December 2007 onwards have had a profound impact throughout the period. Xen is now used on millions of machines around the world, providing deployment flexibility and savings on power. It forms the basis of Citrix XenServer and Amazon's Elastic Cloud 2.
The GRANIT system is a non-destructive technique for assessing the condition of rock bolts and ground anchors used to support structures such as tunnels. It applies a small impulse to the bolt and interprets the resulting vibration response to provide estimates of load and unbonded length. Initial development of the system was based on the findings of EPSRC projects in tunnels undertaken by the Universities of Aberdeen and Bradford from 1989-1997, resulting in an empirically based method. However, research undertaken at the University of Aberdeen since 1998 has provided the understanding of the process and developed the fundamental engineering science needed to underpin the development of a full commercial system. The GRANIT system is patented, and has been subject to worldwide licence to Halcrow who have undertaken testing and provided a method of ensuring the safety of mines, tunnels and similar structures. Halcrow received the NCE award for Technical Innovation Award for GRANIT in December 2010. The impact of the research has been in part economic, but largely on practitioners and professional services.
Since 1995, Loughborough's research into vibro-impact systems (VIS) has made handheld breaker tools safer for operators and has also increased machining efficiency. Users have been prone to detrimental `hand arm vibration' effects of multiple impacts, including the debilitating condition `white finger'. JCB applied the research findings in its HM25LV breaker design, introduced in 2008, which despite being more powerful exhibits half the hand arm vibration of competitors. JCB has sold more than 1,800 units in the UK and abroad.
The Computational Mechanics and Reliability Group at the University of Greenwich has been developing computational methods for predicting material behaviour and component reliability since the late 1990s. This case study details economic and environmental impacts and impacts on practitioners. In particular it shows how our expertise has:
The supply of electrical energy to centres of demand is an increasingly important issue as our power generation sources decarbonise. Without innovation in our use of high voltage cables, security of supply to our major cities cannot be guaranteed. Our research has:
Cranfield's research into ultra-precision machining and production science has led to new production machines, and to commercial availability of advanced optical surfaces, at a level of accuracy previously impossible. Cranfield's industrial clients have won contracts for advanced surface production worth >£5 million in under five years. Cranfield made:
Aeroengine casings are some of the highest value components within the modern gas turbine, since their complex geometries and exotic materials lead to significant manufacturing challenges. The Advanced Manufacturing Research Centre (AMRC) has helped Rolls-Royce to overcome these challenges by developing a novel optimised manufacturing approach for aeroengine casings. This has led to substantial economic impact on Rolls-Royce as the manufacturing time for these components has reduced by up to [text removed for publication] saving more than [text removed for publication] since 2008. [text removed for publication]
Motors are at the heart of all electric machines. World-leading software developed at the Scottish Power Electronics and Electric Drives (SPEED) Laboratory at the University of Glasgow has been used to design thousands of new motors, enabling the manufacture of millions of machines across a range of industrial sectors. From compressors in refrigerators to the motors in power tools, SPEED has improved the design of products manufactured by over 60 companies across the world including Bosch, General Motors, Grundfos and Rolls Royce. In 2011, the SPEED Laboratory was purchased by CD-adapco, the world's largest independent provider of computer-aided engineering simulation software.