Log in
Since the mid-1990s, the Materials and Structures Research Group has been conducting research into materials-joining processes, including metal-ceramic joining for high-temperature applications. The group's research on metal-ceramic interfacial relationships and metal-ceramic joining subsequently assisted Cambridge-based C4 Carbides to optimise metal-to-diamond brazing and develop cutting tools with improved quality and longer lifetimes. Since 2010 the company has also [text removed for publication]
This continuing collaboration has helped C4 Carbides secure a TSB smart award and begin its strategic shift from niche SME to mainstream supplier.
Aeroengine casings are some of the highest value components within the modern gas turbine, since their complex geometries and exotic materials lead to significant manufacturing challenges. The Advanced Manufacturing Research Centre (AMRC) has helped Rolls-Royce to overcome these challenges by developing a novel optimised manufacturing approach for aeroengine casings. This has led to substantial economic impact on Rolls-Royce as the manufacturing time for these components has reduced by up to [text removed for publication] saving more than [text removed for publication] since 2008. [text removed for publication]
Aero-engine discs are complex to manufacture due to the exotic alloys required to withstand stress and temperature. Researchers at the Advanced Manufacturing Research Centre (AMRC) have devised a methodology for optimising the machining of the discs leading to a [text removed for publication] reduction in production time and [text removed for publication]. The availability of these methods has had a direct impact on the business case for a new Rolls-Royce factory in Gateshead, contributing to their decision to invest. [text removed for publication]
Ehiasarian and Hovsepian of the Materials and Engineering Research Institute (MERI) have achieved significant economic impact through industrial uptake of their innovations in High Power Impulse Magnetron Sputtering (HIPIMS). Exploiting these innovations, HIPIMS treatments have been used by manufacturers to enhance the surface properties of millions of pounds worth of products. Applications include industrial blades, components within jet turbines, replacement hip joints, metallised semiconductor wafers and satellite cryo-coolers. Patents based on Ehiasarian and Hovsepian's research have achieved commercial success. In the REF impact period, HIPIMS machines equipped to deliver MERI''s HIPIMS surface pre-treatment have achieved sales of over £5m, and income generated through SHU's HIPIMS-related licences has totalled £403,270. In 2010 Ehiasarian's group established the Joint Sheffield Hallam University-Fraunhofer IST HIPIMS Research Centre, the first such Centre in the UK. This has broadened the industrial uptake of MERI's HIPIMS technologies and stimulated a network of sub-system providers.
Fingerprints remain the most conclusive means of linking an offender to a crime scene. Conventional visualization techniques require the sweat deposit to be largely retained and thus have low success rates. We have developed technologies to visualize fingerprints on metals after the sweat deposit has been substantively lost, deliberately removed or environmentally degraded. One technology uses microscale corrosion caused by the sweat deposit; it has been used in solving gun crimes. A second technology uses trace residual sweat deposit as a template to direct electrochromic polymer deposition to bare metal between the ridge deposits. These have been adopted in the new Home Office Fingerprinting Manual and licensed to UK forensic providers.
The UltraMill machine was developed at Brunel University in 2008, in collaboration with Ultra Precision Motion (UPM) Ltd, to help support UK and European manufacturing SMEs in high value manufacturing sectors, particularly in ultra-precision and micro manufacturing. The machine has a novel design and the sub-systems and machine elements have a number of technological innovations. Two international patents have been granted to protect the IP within the machine. A surface roughness of 4-6 nm was micro-milled on non-ferrous metal components by the UltraMill in 2008, which at the time was the finest engineering surface achieved by ultra-precision micro-milling in the world.
A licence agreement was signed with ITP Group (UK) in 2012 for the commercial production of the UltraMill. This was ITP's first entry into the high-precision milling market. ITP realigned their production systems to begin manufacturing the UltraMill in late 2012 and have manufactured 3 machines to date.
Contour Fine Tooling, which leads the worldwide market in the field of diamond cutting tools, was inspired by the UltraMill, and developed the first diamond micro-milling tool in the world. The UltraMill was used to test the tool's capabilities and feasibility; the new tool has since been successfully sold. It is now being used to manufacture a number of high-value products. In particular it is used by Apple to produce the bevelled edges of the iPhone 5S. Apple currently manufactures 150,000 iPhone 5S units per day.
University of Huddersfield research into surface metrology, carried out as part of the EU-funded SURFSTAND project, has led to worldwide changes in manufacturing. Nine ISO standards related to measuring the surface roughness of parts have been developed as a result, influencing practices in sectors ranging from aerospace and automotive engineering to microelectronics and bio-implant production. Consequently, all quantitative 3D surface measurement carried out in the world now draws on the research. Instrument manufacturers and the National Physical Laboratory have also implemented the standards, while software developed as part of the research has been incorporated by a leading industrial partner, significantly enhancing the company's offering and market position.
Research at Manchester has led to the development of a new class of high performance magnesium alloys based on the addition of rare-earth alloying elements. The new alloys combine low density and the highest strength of any magnesium alloy. Used to substitute for aluminium in aerospace and automotive they produce weight savings of 35% improving performance and reducing fuel consumption. Commercialisation of these alloys by Magnesium Elektron (ME), the international leader in magnesium alloy development, contributes over $20m per annum to company revenue. This includes development of the first commercial product available for bioresorbable magnesium implants, SynermagTM, launched in 2012.
A team of Portsmouth researchers has developed a transparent polymer coating that prevents colonising bacteria from adhering to the surfaces of teeth. In addition to protecting from decay, the polymer coating has the added benefits of reducing dental erosion, alleviating root hypersensitivity, and inhibiting the staining of teeth. GlaxoSmithKline (GSK) has adopted this technology and the polymer has been successfully developed into a component of "next-generation" oral healthcare products.
Novel vapour sorption experimental methods for the characterisation of complex particulate materials have been developed in the Department of Chemical Engineering. This research and expertise resulted in the creation of Surface Measurement Systems Limited (SMS), whose Dynamic Vapour Sorption (DVS) and Inverse Gas Chromatography (IGC) instruments are now found in >500 laboratories around the world. They are recognised standard research and development tools in the global pharmaceutical industry (DIN 66138). SMS has contributed >270 man-years of employment and generated £27M of turnover, whilst SMS instruments have generated over £300M of economic value, over the REF period.