Similar case studies

REF impact found 29 Case Studies

Currently displayed text from case study:

17 - Efficient, High Quality, Silicon Microdisplays

Summary of the impact

Micropix were formed in 1997 as a result of ERPE research (1993-08) into liquid crystal microdisplays. Following a major investment in 2004 the company was re-branded as Forth Dimension Displays (ForthDD).

Due to its unique microdisplay technology, based on the ERPE underpinning research, the ForthDD commercial activity has, since 2008, increased its annual revenue by more than 25% to around $5M and, over the same period, has increased its global workforce from 25 to 35 with exports to 15 countries.

Kopin Corporation, the world's largest producer of microdisplays, acquired ForthDD in 2011 for $11M.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering

Photonic crystal LEDs

Summary of the impact

Implementation of photonic quasi-crystals on light emitting diodes (LEDs) can produce more light using less energy. This technology was brought to the global market via the successful commercialisation of laboratory devices derived from research in nanophotonics and the subsequent development of photonic quasi-crystals by a multi-disciplinary team from the University of Southampton. The intellectual property of the technology was acquired and adopted in 2008 by Luxtaltek Corporation, a global manufacturer of LEDs. In the period 2008-2012 Luxtaltek Corporation, made total profits of £35 million utilising the photonic quasi-crystal LED technology, employing more than 300 people in its production facilities.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Communications Technologies

How LCD research created one of the UK’s fastest growing companies

Summary of the impact

Researchers, and the work they undertook at the University of Exeter during the 1990s, led to the formation of the Defence Evaluation and Research Agency's (now QinetiQ) first spinout company: ZBD Displays Ltd. Achieving revenue growth of 17,910% over the last five years, ZBD's unique electronic retail signage and shelf-edge labelling technology is used by major retailers all over the world. The invention used the know-how developed by ZBD's company founders whose R&D and engineering teams all include former postgraduates from the School of Physics and Astronomy, who acquired their expertise under the supervision of Professors Roy Sambles and Bill Barnes.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Modern global telecom systems powered by technology from the University of Glasgow

Summary of the impact

Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.

Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

P11 - Metamaterials and transformation optics: commercial, communication and defence impacts

Summary of the impact

Metamaterials deliver electromagnetic properties not available in natural materials. Transformation optics replaces the ray picture of Snell's law with the field lines of Maxwell's equations and is an exact description of classical optics. These powerful concepts, originally developed by Prof John Pendry, have engendered massive interest in the electromagnetic community encompassing radio frequency (RF) through to optical applications. His advice is sought by numerous companies and these concepts are now filtering through into products. In the last 5 years there has been great involvement of industry and particularly of the defence establishment in the USA who run several multi mullion dollar programs on metamaterials based at DARPA, WPAFB and Sandia. A company, KYMETA, was formed in 2012 to market this technology with $12M of investment funding, and is developing a laptop-sized antenna that gives instant Internet hotspot access anywhere in the world, with an ultimate application allowing cheap and fast Internet connections for the everyday consumer. In the UK, BAE Systems is using metamaterials for several applications including compact, directional antennas.

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics
Engineering: Materials Engineering

A Wearable Light Source for Ambulatory Treatment of Skin Cancer and Acne

Summary of the impact

Impact: Health and Economic Gains:

Research has led to a wearable light source that provides a new way of treating many skin cancers and acne. The treatment is safe, convenient, and easy to use bringing benefits to patients and healthcare providers. In addition it brings economic benefits to Ambicare Health Ltd, the company commercialising it.

Significance

For skin cancer treatment, the device gives effective treatment with much reduced pain. The simplified treatment procedure allows more patients to be treated in a clinic session. For acne, the device provides a convenient at-home treatment without the application of drugs or chemicals.

Beneficiaries:

Skin cancer and acne sufferers, the clinics that treat them and Ambicare Health Ltd.

Attribution:

The work was led by Professor Ifor Samuel (PHYESTA) working with Professor James Ferguson (Ninewells Hospital, Dundee).

Reach:

The wearable light source has changed treatment in the UK and the Netherlands. The skin cancer treatment is in regular use at more than 25 clinics, and the acne treatment at more than 250 clinics.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Technology: Nanotechnology

Light-emitting Dendrimers

Summary of the impact

Impact: Economic
The light-emittingdendrimers are a new class of materials for organic light-emitting diodes, a major display technology. They have been commercialised by Cambridge Display Technology (CDT), the leading developer of polymer light-emitting diodes.

Significance
Light-emitting dendrimers provided a breakthrough in the efficiency of organic light emitting diode (OLED) materials deposited from solution. This enabled the convenience of solution-processing to be combined with high efficiency, and enabled solution-processed materials to compete with evaporated materials.

Beneficiaries
CDT, display manufacturers around the world and display users.

Attribution
The research was performed by Professor Samuel in collaboration with Professor Burn of the University of Oxford.

Reach
Materials based on light-emitting dendrimers are manufactured by Sumitomo Chemical in Japan and supplied to global displays manufacturers.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Economic success of spin-out company Ossila Ltd.

Summary of the impact

The company Ossila Ltd has developed a range of products targeted at developers of organic electronic devices, with products based on know-how derived from research within the Soft Matter Physics (SMP) group in the Department of Physics and Astronomy. The company also supplies research-based services to technical markets around the world. Since its establishment in 2010, the company has grown organically, and now has a growing revenue stream that makes it a sustainable profit-making entity, with 85% of its products sold to overseas markets. The company enjoys rapid growth and currently employs 10 people (~7 FTE equivalent). Ossila's financial turn-over has increased by between 50-100% annually, [text removed for publication].

Submitting Institution

University of Sheffield

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Technology: Nanotechnology

Manufacture and Commercialisation of Novel Laser Devices, and their Applications

Summary of the impact

Impact: Economic
Based on research carried out within PHYESTA, a range of novel laser devices have been produced and sold under licence by M Squared Lasers Ltd Glasgow.

Significance: The products have significantly expanded the M Squared product range and have led to increased sales and new customer relationships.

Reach: M-Squared have marketed these lasers worldwide and has had major sales from customers in the defence and oil and gas sectors. New collaborations have been enabled with international partners including the Fraunhofer Centre for Applied Photonics (Glasgow).

Beneficiaries: M-Squared Lasers

Attribution: The devices were developed by PHYESTA Researcher Professor Malcolm Dunn's research group

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Technology: Communications Technologies

Case 2 - Device Applications of 3D Silicon Microstructures

Summary of the impact

The Optical and Semiconductor Devices group led by Richard Syms has been a major innovator in fabrication methods for 3D silicon microstructures, and has developed a wide range of novel devices and techniques based on these innovations. T he impact of their research has been to:

I1) bring the power of mass spectrometry to individual chemists' lab benches and fume hoods, raising their effectiveness and productivity through the launch in 2011 of the world's first commercial desk-top mass spectrometer by Microsaic Systems plc, a start-up company founded by members of the group;

I2) create a second start-up company, Nexeon Ltd, to manufacture nanostructured silicon anode materials, resulting in reduced battery size and weight for electric vehicles and portable electronics;

I3) add to mankind's journey of discovery in space with NASA's Phoenix Mars Mission in 2008, as part of the Atomic Force Microscope team, helping to investigate the presence of liquid water on the surface of Mars.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies