Log in
Researchers at the University of St Andrews have changed the way environmental monitoring and impact assessment data are collected and analysed, particularly in the marine environment. We have developed new statistical models of wildlife population dynamics that, for example, form the basis for population assessment of most of the world's grey seals, allowing the UK and Canadian governments to implement effective management of the populations. Other research carried out by us has led to reformulation of the recommended standard statistical practice for impact assessment in the UK marine renewables industry, enabling marine regulators such as Marine Scotland to make better-informed licensing decisions concerning large-scale offshore renewable energy developments.
Research on the distribution, abundance and sensitivity to disturbance of marine predators has been translated into environmental and economic benefits via a series of spin-out companies with a global presence. The research enabled the following impacts:
Direct company earnings were ~£6 million turnover in the assessment period and this supported 24 employees two-thirds of whom are skilled specialists.
The School of Mathematics and Statistics at St Andrews is leading the development and implementation of new efficient algorithms for the GAP (Groups, Algorithms and Programming) free, open-source system for computational discrete algebra. Although it is primarily a research tool, GAP is widely used in education. Therefore lecturers, as well as students in class and beyond, benefit from a whole new range of educational possibilities, for example being able to investigate considerably larger abstract mathematical structures than hitherto. This new, hands-on approach is radically changing the way mathematics is taught in universities worldwide, and is deepening the learning and understanding. The pioneering work of St Andrews researchers has shaped GAP at all levels for 20 years, from discovering and incorporating state-of-the-art algorithms, to its unique design, which is an educational feature in its own right.
The research resulted in primary legislation and provided government with the evidence used when implementing the measures set out within legislation. Specifically, this concerned:
This work, together with connected public outreach, was awarded the Queen's Anniversary Prize in 2011 for excellence in research supporting better governance of the ocean.
The impact of statistical ecology research at Kent is on both the survey design of data collection on wild animals, and the analysis of the resulting data. As a result of our research, better quality data are being collected more efficiently, and a wide range of new methods of data analysis are being used. This is essential for the conservation and management of wild animal populations and the preservation of biodiversity. New methods developed at Kent are now standard tools used in ecology. Examples of impact are improved understanding of the decline of British farmland birds, underpinning conservation action plans; and analysis of data from tiger surveys, supporting the Indonesian Government's National Tiger Recovery Plan.
The Sea Mammal Research Unit (SMRU) in St Andrews designs, builds and supplies instrumentation and software essential for marine mammal tracking. Specific impacts are:
This impact study deals with the development and implementation of an internationally recognised, statistically-based sampling regime for marine sediment hydrocarbon contamination. Its Economic and Environmental impacts include a reduction in sampling and analysis costs to operators while maintaining a statistically robust monitoring procedure to protect and enhance the environment (including valuable fisheries) and support oil and gas exploration/production. This regime was initially adopted by the UK Government in the UK Marine Monitoring and Assessment Strategy in 2009. These statistical-based sampling protocols have subsequently passed into wider environmental policy and the Random Stratified Statistical Sampling Regime represents the accepted standard for marine monitoring in the £22 billion oil exploration and production industry in the UK Continental Shelf. This regime has now been taken-up internationally by the other 14 countries bordering/discharging to the North East Atlantic through the OSPAR Convention for the Protection of the Marine Environment of the North East Atlantic.
Achievement of energy security and the UK's 2020 carbon targets economy depends upon a mix of new offshore oil and gas and renewable energy developments, but concern that seismic survey and construction noise could pose an unacceptable risk to marine mammals threatens to delay these plans.
University of Aberdeen ecologists, under the direction of Paul Thompson, have developed long-term studies of marine mammal population dynamics that now underpin frameworks for assessing and mitigating the impacts of such developments on marine mammals in EU protected areas.
The specific impact on commerce and the environment is that this assessment process has been adopted by industry within their consent applications. As a result of academic consultancy in industry, planning decisions have been informed by the research, and the management of environmental risks has changed. This has reduced the consenting risk for industry and provided an assessment framework that allows regulators to ensure that they are implementing current government policy within international legal frameworks for environmental protection.
This research has profoundly influenced the practice of pharmacoepidemiology in 2008-13. The self-controlled case series (SCCS) method is particularly well-suited for working with computerised databases, which are increasingly used in epidemiology. The method has been recommended by international agencies (WHO, ECDC) and is now widely used by health practitioners within national public health agencies, including the CDC (USA), Public Health England (UK) and many other national and regional public health bodies. It has influenced practice within the private sector (notably the pharmaceutical and the healthcare industries). Use of the SCCS method has impacted on health by reducing costs, improving timeliness and improving the quality of evidence upon which policy decisions are based.
Professor Parrish at Leicester developed a unique high sensitivity urine, soil and particle isotope assay for detection of DU pollution and applied this to Gulf War veterans to quantify exposure to DU munitions. None of the Gulf War veterans tested in a UK MoD study had detectable DU; this allowed the UK government to conclude that DU exposure was limited, and that the harm to veterans was small, although residual environmental issues of chronic exposure have yet to be quantified. The test was also applied to munitions' factory workers and nearby residents, and allowed the exposure to DU to be quantified in individuals and environmental materials. This latter study gave rise to a $0.5M exposure and health study near by the New York State Dept. of Health to better assess the health impacts of DU aerosol exposure.