Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

C7 - Research underpinning laminar airfoil design leading to revised aircraft wing design

Summary of the impact

Research at Imperial concerning the onset of turbulence in fluid flows provided the key theoretical underpinning of the design tools needed to produce the next generation of aircraft wings for both civil and military aircraft. This work facilitates the development of laminar flow wings, which, through reduced fuel consumption of up to 5%, has a significant economic impact, together with a similar environmental impact, associated with reduced engine noise. Carried out in conjunction with industry, most notably EADS/AIRBUS, the work is now part of the current design tools used by AIRBUS and has already influenced the design of the wing developed by AIRBUS for flight-testing in 2015. The financial impact in future for AIRBUS-UK will be measured in billions if and when the technology becomes part of future aircraft.

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

The Violent Forces on Coastal Structures due to Storm Waves

Summary of the impact

Mathematical models of violent flows developed by Dr Mark Cooker at UEA have been adopted by industry. The work enhances the capabilities of coastal engineers to design and repair seawalls and coastal structures, and enhances their interpretation of damage inflicted by storm waves. The research has direct industrial application, and is used to contain, interpret and lessen sea-wave damage to structures. Commercial software has proved inadequate in this field, compared with Cooker's mathematical modelling, because computations alone cannot resolve the brief time- scales and short length-scales over which there are large changes in pressure, and sudden excursions of the liquid as splashes. An example of this impact is the design of an observation gantry exposed to storm waves.

Submitting Institution

University of East Anglia

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Oceanography
Engineering: Maritime Engineering, Interdisciplinary Engineering

Turbulence Generation Method in Urban Environment and Wind Engineering Applications

Summary of the impact

Work by the University of Southampton's Aerodynamics and Flight Mechanics research group (AFM) has led to advances in the field of Computational Fluid Dynamics, a key element of the accurate and cost-effective modelling of airflow and turbulence. New techniques have been incorporated in commercial software releases (e.g. CD-adapco's Star-CD v4) and adopted by leading design and engineering firms (e.g Arup, Buro Happold), giving UK businesses a significant edge over their international competitors. Specifically,

  • CD-adapco with its client base of more than 7,000 users and 3,000 firms, using the new techniques, enjoy a competitive advantage;
  • AFM's work has helped Arup to significantly improve the efficiency and accuracy of design, and Arup's standing on projects.

The techniques have been increasingly influencing the design of wind-sensitive structures by facilitating the faster, cheaper and more precise prediction of factors such as peak wind loading and pollutant dispersion.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Safety on the Sea

Summary of the impact

The safe operation of ships is a high priority task in order to protect the ship, the personnel, the cargo and the wider environment. Research undertaken by Professor Alexander Korobkin in the School of Mathematics at UEA has led to a methodology for the rational and reliable assessment of the structural integrity and thus safety of ships and their cargos in severe sea conditions. Central to this impact is a set of mathematical models, the conditions of their use, and the links between them, which were designed to improve the quality of shipping and enhance the safety of ships. The models, together with the methodology of their use, are utilised by the ship certification industry bringing benefits through recognised quality assurance systems and certification.

Submitting Institution

University of East Anglia

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics, Statistics

17. Improving the Aerodynamic Performance of Formula One Racing Cars

Summary of the impact

Since the 1970's the influence of aerodynamics on racing car design has risen substantially, and now in the modern era it is seen as one of the most important factors in producing a race-winning car. Research carried out in the Department of Aeronautics at Imperial College London, into flow control techniques and the development of cutting-edge numerical and experimental methods has allowed specific and significant improvements in the aerodynamic design of Formula One racing cars. This has led to reduced lap times and a more competitive racing environment. These advances have also contributed to improving handling, resulting in a safer racing environment. This research has provided the Formula One industry, which has an estimated annual turnover of $2 billion, with a means to employ engineers who have the key knowledge and insights that allow them to continue to innovate in a tightly controlled engineering environment. The Chief Designer or Chief Aerodynamicist in six out of the twelve 2012 F1 teams have carried out relevant research at Imperial College London.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Innovative Tunnel Backfill by Pneumatic Conveying of Dry Particulate Materials.

Summary of the impact

Research at GCU led to a novel method for backfilling pipeline tunnels providing the ability to fill tunnels three times more quickly than the traditional method resulting in a cost saving of £1.5M on a single project. This approach is now best practice at Murphy Pipelines Ltd (MPL) and features in current tenders to a value of £30M. The change in fill material lowered the carbon footprint by 5000 tonnes in a CEEQUAL award winning project, in addition, the removable fill material allows the recycling and re-use of tunnels, adding to the assets of the company and reducing costs.

Submitting Institution

Glasgow Caledonian University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Modelling oceanic internal waves to enhance marine and naval predictions and practices

Summary of the impact

Large-amplitude horizontally propagating internal solitary waves commonly occur in the interior of the ocean. This case study presents evidence to demonstrate the impact of research conducted by Professor Grimshaw at Loughborough University on the development and utilisation of Korteweg- de Vries (KdV) models of these waves, which has formed the paradigm for the theoretical modelling and practical prediction of these waves.

These waves are highly significant for sediment transport, continental shelf biology and interior ocean mixing, while their associated currents cause strong forces on marine platforms, underwater pipelines and submersibles, and the strong distortion of the density field has a severe impact on acoustic signalling.

The theory developed at Loughborough University has had substantial impact on the strategies developed by marine and naval engineers and scientists in dealing with these issues.

Submitting Institution

Loughborough University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography
Engineering: Maritime Engineering, Interdisciplinary Engineering

Profiled Endwalls for Reduced Fuel Burn

Summary of the impact

This impact is the improvement of aircraft engine efficiency by the application of profiled endwalls to turbine blades. The technology was researched by Durham University and exploited by Rolls-Royce by deploying the technology on airframes. Engines with profiled endwalls include the Trent 900 (A380 airframe), Trent 1000 (787 Airframe) and Trent XWB (A350 airframe). This (as of April 2013) totals around 2000 aircraft engine orders with profiled endwall technology applied. A saving of 1750 litres of fuel per flight from Zurich to Singapore was estimated when profiled endwalls are applied. This gives a 4400 kg reduction in carbon dioxide emissions for such a journey with a fuel cost saving of over $1100. In addition to the environmental benefit and the obvious cash savings for airlines an economic benefit for UK industry has arisen as Rolls-Royce is able to sell engines with a reduced fuel burn as well.

Submitting Institution

University of Durham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Mechanical Engineering, Interdisciplinary Engineering

Bristol research helps reduce the threat to people and property from snow avalanches

Summary of the impact

Research carried out in the School of Mathematics at the University of Bristol between 1998 and 2005 has been instrumental in the development of structures that arrest or deflect the rapid flow of snow that characterises avalanches in mountainous regions of the world. The research has been embodied in a series of guidance documents for engineers on the design of such structures and many defence dams and barriers have been built across Europe since 2008. The guidance is now adopted as standard practice in many of the countries that experience avalanches. Investment in avalanche defence projects based on the design principles set out in the guidance runs into tens of millions of pounds. The Bristol research is also used internationally in the training of engineers who specialise in avalanche protection schemes. Given the scale of the threat to life and property from these potent natural hazards, the impact of the research is considerable in terms of the societal and economic benefits derived from the reduction of the risk posed by snow avalanches.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Advanced fluid flow modelling improves the efficiency of industrial burners

Summary of the impact

Using advanced mathematics and numerical modelling we have demonstrated how fundamental understanding of laminar-turbulent transitions in fluid flows can save energy. From 2008 we helped the cleantech company, Maxsys Fuel Systems Ltd, to understand and improve their technology and demonstrate to customers how it can reduce fuel use by 5-8%. Customers including Ford Motor, Dow Chemical and Findus testify to the impact from financial savings and reduced carbon emissions obtained by installing Maxsys products on industrial burners used widely in many industrial sectors including automotive, bulk chemicals and food. In 2010, Selas Heat Technology Company bought the Maxsys brand to invest in this success.

Submitting Institution

Aston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies