Log in
A new, more structured way of assessing the various harms done to individuals, families, communities and wider society by a range of legal and illegal drugs was first articulated by Professor David Nutt and colleagues at the University of Bristol. The "rational scale" they developed in the light of their research has stimulated extensive policy debate and informed drug classification in the UK and overseas. The research underpinning the scale has been disseminated through numerous public lectures and discussions and has stimulated worldwide media coverage. As a consequence, public awareness of drug harms has increased and public engagement in important debates about drugs has intensified.
This research has had impact on two linked areas of illicit drug policy. Firstly, pioneering research on the effects of drug decriminalisation in Portugal has shifted the debate on this issue in the UK, US and elsewhere towards an acceptance that decriminalisation is a viable and not harmful approach. Secondly, research on alternatives to imprisonment for drug-dependent offenders has moved debate towards supporting the expansion of treatment for such offenders in the UK and US. These impacts are evidenced in the citation of the research by policy-makers and NGOs (including the British Sentencing Advisory Panel; The All Party Parliamentary Group on Drugs; the Home Affairs Select Committee; UK NGOs, Release and Transform; the US Drug Policy Alliance and the United Nations Office on Drugs and Crime), demonstrating a significant influence on policy-making as well as public debate.
Clinical pharmacology studies conducted at Newcastle have led to optimisation of the administration of the chemotherapy drug carboplatin in children with neuroblastoma and other cancers. The research provided the rationale for carboplatin dosing based on patient renal function, with individualised dosing resulting in increased drug efficacy and reduced toxicity. This approach is now in widespread use in national and European treatment protocols, benefitting over 2,500 children. Similar drug monitoring approaches are being implemented for an increasing number of important drugs. Following a recent Newcastle-led national clinical trial, new dosing guidelines for the drug 13-cis retinoic acid have been adopted for high-risk neuroblastoma patients across Europe.
A routine test to screen for patients genetically disposed to serious side effects from treatment with thiopurine drugs has been widely adopted following research by the Academic Unit of Clinical Pharmacology at the University of Sheffield. The test has spared patients painful and potentially life-threatening sepsis, and saved the considerable associated treatment costs which have been estimated to be over £9,000 per patient for a 17 day hospital stay. It has also led directly to a change in clinical guidelines and recommendations in both the USA and UK.
The health of people who inject illicit drugs, the formulation of harm-reduction policies, and the work of associated businesses and social enterprises have all benefited from the University's laboratory and practice research into the safety and efficacy of materials and equipment used in needle-exchange programmes. The research has informed the development of safer acids for injection preparation, safer injecting paraphernalia (e.g., spoons and filters) and an information film which has been distributed from needle exchanges on DVD and viewed over 50,000 times online. The research has led to enhanced support and protection for injecting drug misusers, and to advances in harm reduction in the UK, France and Canada.
Research at the University of Sheffield developed pharmacokinetic tools that enable prediction of drug absorption, distribution, metabolism and excretion, and potential drug-drug interactions. In 2001 the University created a spinout company, Simcyp Ltd, to commercialise the technology. The impacts are:
Professor Bewley-Taylor's research has provided a challenge to conventional wisdom within high-level debates on international drug control. His research has pioneered concepts that explain the increasing tensions between the United Nations (UN) drug control conventions and national policies on controlled drugs that deviate from punitive-prohibition, and it has classified policy options as conforming, challenging or contradictory to the UN conventions. Through publications, presentations and face-to-face consultation, he has influenced the work of non government organisations on drug policy and stimulated debate among national, UN and European Union drug policy officials and national ambassadors considering changes in policy or withdrawal of existing policy. In helping to reframe drug policy discourse, his research has facilitated consideration of policy approaches that aim to reduce a range of drug-related harms.
Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.
Biomedical devices that need to be implanted into the body typically experience the so-called foreign-body reaction: proteins adhere to the surface of the devices, leading to rapid loss of function and, eventually, to a requirement for replacing the device. Between October 2006 and September 2011, The University of Reading, in collaboration with the UK SME BioInteractions Ltd., developed and evaluated a range of new polymers for coating implantable biomedical devices, especially coronary stents and catheters. The result was a coating system that can deliver a drug controllably over a pre-defined period, leading to the commercial biomaterials platforms AdaptTM and AssistTM. This work resulted in capital investment by Biointeractions Ltd and a substantial increase in their research staffing.
The emergence of new psychoactive substances (NPS) in Europe over the last decade (including performance and image enhancing drugs), poses challenges to policy makers. These are substances which are frequently not controlled under law, and governments have struggled to address potential societal and health harms of use. We have analysed this drugs market, described the potential health harms of NPS, and generated evidence on effective intervention responses for some of these. Our findings have provided the necessary evidence to support the development of robust, responsive and predictive policy making at both national and international levels.