Log in
A long-term research programme into landslides and rockfalls by DU researchers, focused on the use of novel field and laboratory techniques, has had impact on UK and foreign government authorities, NGOs, and businesses. The work has provided frameworks for managing hazard associated with deep-seated landslides in New Zealand and a landslide-dammed lake in northern Pakistan. Research on coastal cliff erosion in North Yorkshire has provided critical support for high-value mining activities at the UK's largest non-hydrocarbon extractive mine, and has underpinned local government strategies for shoreline hazard assessment and management.
Body Sensor Networks (BSN) research developed novel sensing algorithms and technology suitable for on-body pervasive sensing suitable for healthcare, well-being and sporting applications. The main impact includes:
Cardiff University's research in acoustic emission monitoring and refined data analysis has been applied to large, complex structures and has subsequently transformed the inspection processes of concrete and steel bridges. This has been commercialised by Mistras Group Ltd. to provide a safer, more reliable and progressive means of bridge monitoring, enabling the company to acquire a global reputation and increase its turnover to £7.5M per year — £5M relating to Cardiff research. Cardiff's innovations have had major international impacts (in UK, Europe, India and USA) through:
A ground-breaking range of innovative sensor products — the EPIC Sensors — has been developed and marketed world-wide by Plessey Semiconductors Ltd. The EPIC Sensors allow contact-free measurements of electric phenomena, initially aimed at the health, sports and automotive markets. They operate on the non-invasive, low-cost, generic, award-winning Electric Potential Sensor (EPS) technology invented and developed at Sussex as a spin-off from fundamental low-temperature physics research. Income to the University from licence fees, costs and royalties started during 2012. Sustained industry engagement with key strategic partners in the medical, forensic, security, materials testing and geophysics sectors, including government organisations, industry and academia, is leading to a wider awareness and adoption of this novel technology.
NIBEC connected health related research over the past 20 years has led to three high value spin- out companies. Their success is based on exploitation of over 35 NIBEC patents in medical sensors and electro-stimulation devices. Together these companies are currently valued at almost £100m, employ over 150 skilled people and have engineered medical innovations that have had global beneficial impact on health costs and patients' lives over these past four years. Our research is closely linked with international partners, commercial and clinical, has impacted local government policy through our leadership of the European Connected Health Alliance and has resulted in the £5m industry-focussed Connected Health Innovation Centre established at NIBEC.
Management of Slope Stability in Communities (MoSSaiC) is a scientifically-based methodology developed at the University of Bristol to mitigate urban landslide risk in developing countries that has been adopted by the World Bank as part of its portfolio of disaster risk management tools. MoSSaiC centres on the efficient management of surface water and is distinct from other interventions in that it is delivered through a community-focussed programme that is rolled out in strategic incremental steps. MoSSaiC was first developed in 2004 and piloted in vulnerable urban communities in St Lucia. Since 2008 it has been implemented in additional communities in St Lucia, St Vincent and the Grenadines, and Dominica (totalling ~800 homes in 12 communities).
A direct benefit of MoSSaiC is improved slope stability, evidenced by the absence of landslides in these communities despite the exceptional rainfall of Hurricane Tomas in 2010. Indirect benefits include rainwater harvesting and reduced water bills (one community saving an estimated EC$63,000), and savings to Government of community relocation costs. As a result MoSSaiC has led to governments and international development agencies taking a radically different and more effective approach to tackling landslide hazards in vulnerable urban communities.
An engineering methodology, Management of Slope Stability in Communities (MoSSaiC), has been developed to mitigate urban landslide risk in developing countries, and has been implemented in the Eastern Caribbean. The World Bank is now including the methodology in disaster risk mitigation projects more widely in the Latin America and Caribbean regions, starting with Jamaica (September 2011-). MoSSaiC centres on the efficient management of surface water (construction of hillside drainage networks) and is delivered through a community-focussed programme with a benefit-cost ratio of 2.7:1. The impact includes:
In 2011, the World Bank selected 13 methodologies for an `Aid Effectiveness Showcase' exhibition at its Washington DC headquarters. Due to its effectiveness, MoSSaiC was included as the only methodology relating to landslides.