Similar case studies

REF impact found 21 Case Studies

Currently displayed text from case study:

Inspiring the next generation of Physicists through engagement

Summary of the impact

A public engagement campaign based around 15 years of natural photonics research at Exeter University succeeded in enthusing school-age children in a science that was suffering declining levels of interest. Professor Pete Vukusic gave a series of lectures that brought the science of light and colour to life for 17,000 students and 1,500 teachers across the UK, Ireland and Africa, and subsequently a global audience of thousands via YouTube. His work played a central role in the Institute of Physics' efforts to promote the value of physics in the UK and overseas, contributing to a marked rise in the number of students taking physics A-level. In 2013, Vukusic was awarded the distinguished Royal Society Kohn Award for Excellence in Engaging the Public with Science.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics

Photonic crystal LEDs

Summary of the impact

Implementation of photonic quasi-crystals on light emitting diodes (LEDs) can produce more light using less energy. This technology was brought to the global market via the successful commercialisation of laboratory devices derived from research in nanophotonics and the subsequent development of photonic quasi-crystals by a multi-disciplinary team from the University of Southampton. The intellectual property of the technology was acquired and adopted in 2008 by Luxtaltek Corporation, a global manufacturer of LEDs. In the period 2008-2012 Luxtaltek Corporation, made total profits of £35 million utilising the photonic quasi-crystal LED technology, employing more than 300 people in its production facilities.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Communications Technologies

Light-emitting Dendrimers

Summary of the impact

Impact: Economic
The light-emittingdendrimers are a new class of materials for organic light-emitting diodes, a major display technology. They have been commercialised by Cambridge Display Technology (CDT), the leading developer of polymer light-emitting diodes.

Significance
Light-emitting dendrimers provided a breakthrough in the efficiency of organic light emitting diode (OLED) materials deposited from solution. This enabled the convenience of solution-processing to be combined with high efficiency, and enabled solution-processed materials to compete with evaporated materials.

Beneficiaries
CDT, display manufacturers around the world and display users.

Attribution
The research was performed by Professor Samuel in collaboration with Professor Burn of the University of Oxford.

Reach
Materials based on light-emitting dendrimers are manufactured by Sumitomo Chemical in Japan and supplied to global displays manufacturers.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Organic solid state lighting: building a full commercial supply chain in the UK (Polymer Lighting)

Summary of the impact

Interdisciplinary research on a new class of organo-metallic light emitting polymers showed that they could produce white light very efficiently. A consortium of the University and Industry (predominantly Thorn Lighting, the largest lighting manufacturing employer in the North East) developed and patented these into a viable alternative to mercury vapour fluorescent lights with a £4.3M grant from the DTI with matched funding from industry. The companies are investing in scaling this up to a full commercial supply chain, supported by a £4M grant from the Technology Strategy Board. The success of the project helped BIS secure £20.5M to support Plastic Electronics in the UK, creating 26 jobs, and was cited as a factor in the Thorn decision not to close down its North East site, safeguarding 600 jobs.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Re-designing artificial lights to suit our biological needs

Summary of the impact

Regulation of our sleep-wake cycle is crucial to health and well-being. The quality (intensity and spectral distribution) of artificial light is currently described according to its ability to activate rod and cone photoreceptors in the human eye. This approach ignores the discovery of a third photoreceptor that Lucas and his group have shown to be responsible for a range of sub-conscious neurophysiological and neurobehavioural responses to light, which together strongly contribute to health, productivity and well-being. Their research has established ways of measuring light that predict its effect on these newly discovered photoreceptors. They have partnered with industrial [text removed for publication] and public policy (various) organisations to translate this knowledge into improved artificial light sources and updated international standards for architectural lighting, for use in a wide range of domestic, public and industrial settings.

Submitting Institution

University of Manchester

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Physiology
Medical and Health Sciences: Neurosciences

Harnessing the power of ‘metamaterials’ to drive innovation at QinetiQ

Summary of the impact

The manipulation of electromagnetic radiation using novel materials by physicists at the University of Exeter has given rise to new technologies for military stealth applications, anti-counterfeiting measures and Radio Frequency Identification (RFID) of pharmaceuticals, machinery and perishable goods. The research findings increased the global competitiveness of FTSE 250 defence and security company QinetiQ, driving innovation in its work with the MoD and leading to the creation of a successful spin-out, Omni-ID, that is meeting demand in the high-growth RFID market. Exeter's research underpinned the EPSRC decision to award the University and QinetiQ £3.2m to exploit applications of their patented technology.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Communications Technologies

Improved work productivity and enhanced health and wellbeing through novel lighting systems

Summary of the impact

Circadian rhythms impact upon a large proportion of human biology. Disruption due to genetic or environmental (e.g. altered sleep patterns in shift workers) cues results in reduced quality of life and increased morbidity for millions of people every year.

Researchers at Surrey first demonstrated blue light sensitivity of the human circadian system, resulting in increased alertness and mood. This led to changes in international lighting standards and the development and use of novel lighting systems, such as blue-enriched polychromatic lighting. These systems have been employed in homes for older people, factories, offices, hospitals and schools, increasing health and wellbeing.

Submitting Institution

University of Surrey

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Neurosciences
Psychology and Cognitive Sciences: Psychology

How LCD research created one of the UK’s fastest growing companies

Summary of the impact

Researchers, and the work they undertook at the University of Exeter during the 1990s, led to the formation of the Defence Evaluation and Research Agency's (now QinetiQ) first spinout company: ZBD Displays Ltd. Achieving revenue growth of 17,910% over the last five years, ZBD's unique electronic retail signage and shelf-edge labelling technology is used by major retailers all over the world. The invention used the know-how developed by ZBD's company founders whose R&D and engineering teams all include former postgraduates from the School of Physics and Astronomy, who acquired their expertise under the supervision of Professors Roy Sambles and Bill Barnes.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

17 - Efficient, High Quality, Silicon Microdisplays

Summary of the impact

Micropix were formed in 1997 as a result of ERPE research (1993-08) into liquid crystal microdisplays. Following a major investment in 2004 the company was re-branded as Forth Dimension Displays (ForthDD).

Due to its unique microdisplay technology, based on the ERPE underpinning research, the ForthDD commercial activity has, since 2008, increased its annual revenue by more than 25% to around $5M and, over the same period, has increased its global workforce from 25 to 35 with exports to 15 countries.

Kopin Corporation, the world's largest producer of microdisplays, acquired ForthDD in 2011 for $11M.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering

A Wearable Light Source for Ambulatory Treatment of Skin Cancer and Acne

Summary of the impact

Impact: Health and Economic Gains:

Research has led to a wearable light source that provides a new way of treating many skin cancers and acne. The treatment is safe, convenient, and easy to use bringing benefits to patients and healthcare providers. In addition it brings economic benefits to Ambicare Health Ltd, the company commercialising it.

Significance

For skin cancer treatment, the device gives effective treatment with much reduced pain. The simplified treatment procedure allows more patients to be treated in a clinic session. For acne, the device provides a convenient at-home treatment without the application of drugs or chemicals.

Beneficiaries:

Skin cancer and acne sufferers, the clinics that treat them and Ambicare Health Ltd.

Attribution:

The work was led by Professor Ifor Samuel (PHYESTA) working with Professor James Ferguson (Ninewells Hospital, Dundee).

Reach:

The wearable light source has changed treatment in the UK and the Netherlands. The skin cancer treatment is in regular use at more than 25 clinics, and the acne treatment at more than 250 clinics.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Technology: Nanotechnology

Filter Impact Case Studies

Download Impact Case Studies