Log in
Publically and industrially funded research at Loughborough University into the simulation, monitoring and control of electronics soldering has had significant impact in the development of new software and hardware technologies, which have delivered substantial commercial and economic benefits, with examples cited for at least two leading companies. One key commercial product is a modelling tool that optimizes reflow oven settings quickly, easily and accurately. It optimises oven settings each time a new product or solder paste is introduced, reducing set up times and scrap levels. More than 700 systems per year continue to be sold, with 90% exported.
Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.
The research has enabled industrial simulation users to investigate and develop larger scale systems faster and cheaper and thus to explore a wider variety of cost-saving options with more precision, and industrial simulation providers to offer new high-performance simulation (HPS) products and services. As a direct result of this work: Ford has made £150,000 cost savings in consultancy and significant process improvements to engine manufacture globally; Saker Solutions (UK SME) has created the first ever HPS system for production and logistics; Sellafield PLC has used this system to make significant process improvements and savings in the management of nuclear waste reprocessing of around £200,000 per year; and Whole Systems Partnership (a UK SME) used a spin-off from this research to generate a £200,000 per year revenue stream from interoperable healthcare decision support systems. Globally, several other companies are adopting the standardisation efforts and other outcomes of the research as the foundation for future innovation.
This case study describes the international impact of research in the computer modelling and simulation of automotive and aerospace crashes, undertaken by Professor Blundell. The main impacts arising from the research can be summarised as:
Economic impact and impact on passenger safety: i) our research has led to improvements in the MADYMO software suite, the `industry standard' software for safety design and virtual crash testing, which is produced by TNO Automotive Safety Solutions (TASS) and sold to all the main equipment manufacturers in the automotive and aerospace sectors ii) our research has reduced the costs of these equipment manufacturers, who can simulate a crash rather than undertake expensive, physical, crash tests iii) by improving MADYMO, our research has had an impact on passengers who are now travelling in cars and aircraft which safer as a result of MADYNO's enhanced capabilities.
Impact on practitioners and professional services: through working with Blundell and his group, Autoflug GmbH has learned how to incorporate advanced simulation into its product development process. The work has also transferred practices from the automotive sector into aviation. Blundell's research has helped to introduce manufacturers and European regulators to new methods to design safety systems to helicopters, an area previously underdeveloped as an area in aviation occupant crash protection.
Beneficiaries include Autoflug GmbH, TASS and its customers, and European aviation regulators.
Research by the University of Huddersfield has produced an in-depth understanding of the factors that contribute to machine tool inaccuracy. This has led to predictive methods for assessing the capability of machines to produce specific components and the development of a low-cost electronic compensation system that can increase machine tool accuracy by a factor of 10, with significant cost savings for factory temperature control. A contract has been signed to market this system globally. Rapid calibration techniques have been developed, in collaboration with a UK world-leading aerospace manufacturer, reducing timescales from days to less than one hour.
Multinational companies [text removed for publication] have saved more than 20,000 tonnes of plastic and $10M in less than 4 years, using QUB technology to develop their innovative lightweight plastic bottles.
This has created both economic and environmental impact through the savings in material, transport and energy costs and a reduction in CO2 usage. For example the [text removed for publication] showed savings per year of €3M and 1800 tonnes of plastic and a reduction of CO2 of 800 tonnes/year.
A spin-out company, built on this technology, was created in 2012 and is actively selling process instrumentation (THERMOscan) to both USA and EU customers enabling them to make further reductions in material and energy usage. The product won a clean energy award in 2011.
Research at Portsmouth has significantly improved the understanding of damage tolerance under creep-fatigue-oxidation conditions experienced in aero-engine components. The understanding has been developed through research on a new-generation disc materials including U720Li and RR1000, which have since been used in Rolls-Royce engines including Trent 900 in Airbus A380, Trent 1000 in Boeing 787 and the latest Trent for Airbus A350 XWB. These new materials have enabled aircraft to operate more efficiently at higher temperatures, with a major impact on CO2 emission and a significant impact on economy due to the new market opportunities and the reduction of operating costs.