Log in
In partnership with the US company Nalco, the University's Surfactant & Colloid Group developed a new multifunctional technology (Clean n Cor) for the oil industry that both removes accumulated deposits at a metal surface (enabling "break-through" of corrosion inhibitor to the metal surface) and inhibits corrosion. Clean n Cor technology not only protects assets such as oil pipelines against corrosion but also maximises oil production through enhancing water injectivity (water flow per unit pressure drop). Since its launch in 2007, it is currently one of Nalco's fastest growing new technologies and is used at over 100 production locations worldwide.
A team of Portsmouth researchers has developed a transparent polymer coating that prevents colonising bacteria from adhering to the surfaces of teeth. In addition to protecting from decay, the polymer coating has the added benefits of reducing dental erosion, alleviating root hypersensitivity, and inhibiting the staining of teeth. GlaxoSmithKline (GSK) has adopted this technology and the polymer has been successfully developed into a component of "next-generation" oral healthcare products.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
Newcastle University's fundamental research into the theory of concurrency and the automated construction and analysis of asynchronous systems has resulted in novel technologies that have been adopted and applied worldwide by industry. This case study describes impact over the last five years on the industrial development of asynchronous microprocessor chips, in particular, deployed by Intel for handling financial transactions on NYSE and NASDAQ (with combined daily volume of trade exceeding £80 billion), and the improvements in business process analysis through the world-leading open-source ProM tools (downloaded over 65,000 times since 2008, and used by a number of major organisations, e.g. ING Bank and Deloitte).