Log in
In this case study, two specific examples of impact are reported. One is cost-effective and high-performance smart antennas for the offender tagging system and marine navigation system for Guidance Navigation Ltd (Guidance). This collaboration has resulted in new and leading products and also helped the company to win a range of contracts. The other example is the development of a novel intelligent drilling system_for Zetica Ltd. This system can detect deeply buried unexploded ordinance and other objects. It has given Zetica a unique new product to significantly improve operational safety and win business worldwide.
We have developed enabling technologies for the defence, automotive and identification industries, the health service and the wider community where our contributions enable end users to maximise performance for a given cost. Work on Frequency Selective Surfaces (FSS) produced sub-reflectors for aerospace (BAE Systems — mm/sub-mm satellite radiometers for earth observations). Small antenna and RFID work led to new products in the automotive industry (Harada Industries), on-line fuel management systems (Timeplan Ltd), wireless smoke detectors (EMS Group), connectors (Martec), antennas (Panorama Antennas Ltd) and for Digital TV (Mitsubishi). Millimetre-wave over fibre systems linked antennas have supported the acquisition of new astronomical data, through the international ALMA (Atacama Large Millimetre Array) project, facilitating deeper public understanding of the universe.
HDM-4 is the most widely used system for road investment appraisal and decision making, generating improvements in public policies and services. Economic development and road agencies in developing countries are major users of the tool. HDM-4 has become the de facto standard used by the World Bank for its road investment appraisals and has been used to assess more than 200 projects since 2008, with some $29.5bn of World Bank loans, credits or grants drawn-down to fund these. Uptake of the tool has led to the commercial success of HDMGlobal, a consortium which manages the distribution and development of the software under exclusive licence from the World Road Association-PIARC, with revenues of £1.6m generated since 2008. HDM-4 has also been utilised for economic assessment and road systems investment management in the UK.
Strong collaboration and associated technology transfer from ERPE have enabled SeeByte to stay at the forefront of technology, securing strategic partnerships including Subsea7, BAE SYSTEMS and the US Navy in the offshore and military markets. This has enabled sustained employment in the science and engineering sector growing to 50 staff and financial growth, 15 technology licenses from ERPE have directly or indirectly generated £11 million in revenues for SeeByte in the REF impact period. In October 2013 SeeByte was acquired by Bluefin Robotics Inc, a spin out of MIT owned by the Battelle group [text removed for publication].
Led by Professor Andrews, a computational method for real time mission planning, based on Binary Decision Diagrams (BDD), was developed in the Mathematical Sciences Department at Loughborough University (LU) from 1993-2003. This is fast and accurate and can be used to support decision-making on system utilisation in real-time operation, which has led to the ability to diagnose in flight faults for unmanned aerial vehicle (UAV) applications.
The research has changed the understanding and awareness of the advantages of BDD, resulting in integration into major industrial trials and proprietary software products, including at BAE Systems, one of the world's largest companies in an area of vital importance to UK security and economic development. The methodology has attracted significant research funding in collaborative programmes with industry.
Research undertaken by the Institute for Transport Studies (ITS) at the University of Leeds from 1995 to 2012 has demonstrated that in-vehicle intelligent speed adaption (ISA) - technology to discourage or restrict speeding - reduces drivers' propensity to speed and consequently can dramatically reduce injury and fatality risk. ITS Leeds research has also shown the environmental benefits of these systems and their high acceptance by users and the public. This evidence has led policy-makers at national, European and international levels to advocate ISA adoption. A key impact has been Euro NCAP's decision in 2013 - directly informed by the ITS Leeds research - to explicitly recognise ISA within the safety ratings of new cars. To this end, the ITS Leeds research has informed a significant change to European-wide `quasi-regulation' and, through encouragement to car manufacturers, imposed lasting influence on the safety features of new cars.
A new product has been developed to aid marine navigation and berthing at ports, based on the use of a single-sideband (SSB) active target, offering the dual benefits of substantially enhanced performance, and reduced size and production costs. The research has achieved significant commercial impact via the incorporation of the technique, conceived by Brennan, into all such targets made by Guidance Microwave Ltd, a UK-based engineering company specialising in the development, manufacture and supply of short-range active target location systems. To date, the company has sold approximately 700 active targets (around 25 per month), generating more than £3 million in sales. The idea (subject to patent protection) was initially incorporated in the mini-Radascan product, which is now a valuable tool to the industry and has given Guidance Microwave Ltd. a competitive advantage, becoming their most successful product.
This case study describes how spin-out company, Antrum Ltd (founded in 2001) realises the commercial potential of Loughborough University's extensive antenna research. Antrum has been consistently profitable typically turning over between £150K - £300K. Examples of how research projects, through industrial partnership, have evolved to commercial products illustrate the success of Antrum's business model and the effectiveness of the partnership between the University and its spin out company. The Case Study describes how the University's wireless communications research, between 1998 - 2011, consistently challenged accepted antenna design to meet demand for products that are more efficient, robust, smaller and commercially viable.
This research by the University's Transportation Research Group (TRG) has contributed to the development of sustainable road transport networks both in the UK and other leading cities worldwide. In summary:
State-of-the-art radio systems require antennas that are a) able to cover an ultra-wide range of operating frequency bands, and b) compact and yet robust enough to be mounted in settings that range from satellites to the human body. Our pioneering work in this area has led to the significant contributions to the UK Ofcom Spectrum Framework Review and the developments of new products and business opportunities, new technologies for assessing the EM emission on the mobile handset and for smart meter deployment, and wearable antennas deployed in the battlefield to reduce the load and smart communications for dismounted soldiers.