Similar case studies

REF impact found 44 Case Studies

Currently displayed text from case study:

Modification of hydrocolloids to produce novel and enhanced food products

Summary of the impact

Research into the characterisation, functional properties and applications of hydrocolloids which improves the stability of beverage products has been transferred to end users through the University's Phillips Hydrocolloids Research Centre. The associated development of industry standards for acacia gum supply has resulted in more than 44 companies since 2008 directly using the University's analytical services or adopting its methodologies, enabling improvements in productivity, product stability and costs. The Gum Arabic Board of Sudan invited the University to assist in improving gum arabic industry practices and methodologies for processing, storage and traceability from source in supply of consistent and quality materials, producing benefits in terms of volume of business.

Submitting Institution

Glyndŵr University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Economic impact through improved product and process development within Carron Phoenix.

Summary of the impact

Initial research into polymer nanocomposites and their formation took place at Strathclyde from 2000 - 2010. This was followed by a collaboration with the world's largest manufacturer of composite kitchen sinks, Carron Phoenix Limited, through a 6-year Knowledge Transfer Partnership (KTP) which resulted in a successful new production process of its high-end synthetic granite kitchen sinks. This led to £4 million of capital investment in new production facilities at their Falkirk site, enabling the company to sustain its leading position in the designer kitchen sink market and retain its workforce of over 400 employees in central Scotland, including the 170 workers in the composite sink division in Falkirk. Within the REF period, the research has led to the manufacture and sale of in excess of one million kitchen sinks, generating sales revenue in excess of over £50M and supporting the UK economy.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Materials Engineering, Resources Engineering and Extractive Metallurgy

Multi-million pound sales and efficiency gains through formulation development and process optimisation

Summary of the impact

Significant economic impact was achieved as a result of research into polymer nanocomposites and their formation, conducted at WestCHEM from 2000 to 2010. Collaboration over the six-year period 2004-2010 with Carron Phoenix Ltd, the world's largest manufacturer of composite `granite' kitchen sinks, led to nanocomposite technology being incorporated into over one million sinks, generating income for the company in excess of £50M from 2007 to the present day. Considerable production efficiency gains saved in excess of £1M annually through the reduction in manufacturing time, the reduction of raw materials wastage, and the reduction in landfill costs (and commensurate environmental benefit) for failed and out-of-spec products. In addition, a £4M capital investment by the company at the Falkirk plant was secured, enabling the company to sustain its leading position in the designer kitchen sink market. With the site consequently designated as the parent company's competency centre for composite sink technology, employment for 170 workers was secured.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering, Mechanical Engineering

Chemtrix - Scalable Flow Chemistry

Summary of the impact

Chemtrix Ltd. was established in February 2006 as a 50-50 joint venture between the University of Hull and Lionix Ltd. In 2008 the company attracted investment from Limburg Ventures BV, Panthera, Technostartersfund, Microfix BV and Hugo Delissen (€2 million) that led to the creation of Chemtrix BV. In 2009 the Company launched Chemtrix USA and a second investment round followed with investors Particon BV. In 2012 ESK Ceramics GmbH & Co. KG, acquired a minority interest (30%) in Chemtrix BV based on a valuation of €5.3 million.

The three products developed and marketed by Chemtix, Labtrix®, KiloFlow® and Plantrix®, are differentiated from competitor products as they offer `scalable flow chemistry', such that optimised reaction conditions can be easily scaled from R&D to production. In addition to the employees and investors in Chemtrix the main non-academic beneficiaries of the research have been industrial customers such as Janssen Pharmaceutica NV, Edward Air Force Base, Iolitec GmbH and DSM.

Submitting Institution

University of Hull

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Chemical Engineering, Interdisciplinary Engineering

UOA08-07: Understanding solid-liquid reactions to improve manufacturing processes for agrochemicals at Syngenta

Summary of the impact

The cost of goods is an especially important issue in developing commercially available agrochemicals, which must be manufactured on a large scale. Richard Compton's research at the University of Oxford has led to a step change in the understanding of heterogeneous reaction mechanisms for liquid — organic solid or liquid — inorganic solid processes involved in large-scale manufacturing processes. Compton's work has had particular impact on optimising the processes used by Syngenta AG in its manufacturing of agrochemicals. Since 2008 the insights gained on inorganic-base dissolution have been of great benefit to Syngenta in its development of scalable robust manufacturing processes, particularly in relation to production of its fungicide Amistar and insecticide Actara, which are two of the world's largest selling products of this type. In 2012 Syngenta achieved total sales of over $ 14 billion, $ 4.8 billion of this from fungicide and insecticide revenues.

Submitting Institution

University of Oxford

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Expertise in die drawing of polymers leads to new materials, new manufacturing processes, new products and a new company

Summary of the impact

Research into die drawing of polymers at Bradford has resulted in a new building material that is stronger and more durable than wood; and new bioresorbable shape-memory polymers for use in medical implants that reduce patient trauma and costs. The wood replacement material is commercialised by the United Forest Products/Dow USA 2010 spin out company Eovations LLC for use in a range of construction applications; the bioresorbable shape-memory polymers have recently been patented (4 patents filed) by Smith & Nephew for use in soft tissue fixations. These impacts form part of a range of exploitations of our oriented polymer technology.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Baffled Reactors for Continuous Reaction and Crystallisation

Summary of the impact

Research at Heriot-Watt University (HWU) has led to the development of a new continuous oscillatory baffled reactor and crystalliser technology. This has direct economic and environmental impact in the chemical, pharmaceutical and food industries. Waste is substantially reduced, while the scale of the equipment and plant is dramatically decreased, reducing time to market, start-up and maintenance costs and on-going energy usage. The reactor/crystalliser was taken to market through a spinout, NiTech Solutions Ltd, with a peak of 16 employees in the REF period. Genzyme (now Sanofi) has implemented NiTech's technology for biopharmaceutical manufacture since 2007, with multi-100 ton production and sales of multi-£100M pa. The technology now underpins the larger-scale joint venture, the Continuous Manufacture and Crystallisation (CMAC) consortium, launched in 2010. CMAC has attracted over £60M investment, much of it from three major industrial partners, GSK, AstraZeneca and Novartis, with additional second-tier investors. CMAC is accelerating the introduction of new process-intensification technologies in the process industries.

Submitting Institution

Heriot-Watt University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Engineering: Chemical Engineering, Interdisciplinary Engineering

Exosect: an innovative electrostatic technology for environmentally friendly pest control

Summary of the impact

Based on innovative technology invented and developed through research at the University of Southampton, sustainable pest control products by spinout company Exosect are being employed around the world to preserve the global food supply. Since 2008 its bio-control products have been newly adopted in diverse situations: by Sainsbury's in response to consumer pressure to reduce chemicals in food; by Bayer CropScience, who bought rights, in a multimillion pound deal, to a product for the protection of bee populations; by English Heritage to preserve the UK's cultural heritage. The technology has inspired a US$1m Gates Foundation grant for poverty reduction efforts in sub-Saharan Africa and raised awareness among conventional pesticide manufacturers of the environmental and economic benefits of bio-control solutions.

Submitting Institution

University of Southampton

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Agricultural and Veterinary Sciences: Crop and Pasture Production, Horticultural Production

Unprecedentedly high modulus, high tensile strength light weight tapes and films for demanding applications

Summary of the impact

The development of disentangled, ultrahigh molecular weight polyethylene at Loughborough University since January 2007 has provided an environmental friendly route to the manufacture of high modulus, high tensile strength tapes with applications ranging from body armour to helmets, ropes and cables. Commercialisation is being undertaken by the Japanese company Teijin, in the Netherlands, under the brand name Endumax®. The new business, started in 2011, now employs >80 staff and predicts annual sales of >€15M from 2014 with an increase of ~10% over the first five years. Competitors such as Du Pont (Tensylon®) and DSM (Dyneema BT10®) have also initiated development of products using the new process route.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Therapeutic protein and vaccine stabilisation technology with global reach across the pharmaceutical industry

Summary of the impact

A novel self-assembly process, developed at WestCHEM was shown to provide a step-change for stabilising proteins as dry powders. The spin-out company, XstalBio, was created in 2004 and licensed the patented technology with the aim of developing it for delivery and formulation of therapeutic biomolecules and vaccines. Over the period 2008-2012, eight leading international pharmaceutical and animal health companies paid XstalBio over £2.2M for access to its IP portfolio and to undertake evaluation studies with candidate biomedicines and vaccines. XstalBio employed 8 highly skilled research scientists over this period and 4 further patent families were generated. Boehringer Ingelheim licensed the technology for application to its therapeutic biomolecules and in collaboration with XstalBio built a dedicated €5M pilot plant for manufacture of inhalable dry powders.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Filter Impact Case Studies

Download Impact Case Studies