Log in
The production and use of monoclonal antibody, ALK1, by researchers in Oxford has been pivotal in enabling the accurate diagnosis and treatment of Anaplastic Large Cell Lymphoma (ALCL). This research also led to the formal classification of ALK-positive ALCL tumours by the World Health Organization in 2008. While ALCL accounts for 10-20% of paediatric/adolescent non-Hodgkin's lymphoma worldwide, its diagnosis had been problematical due to the absence of suitable reagents. This was remedied in 1997 when Oxford researchers created the first monoclonal antibody, ALK1, recognising anaplastic lymphoma kinase (ALK), a molecule that is associated with up to 90% of ALCL.
Stem cells play an important role in drug discovery and development of therapeutic interventions. Differentiation (and maintenance) of stem cells into specialised cells is achieved by controlled application of specific, expensive growth factors.
Dr Hyvönen has developed an efficient method for producing highly purified, bioactive human growth factors from E.coli, reducing costs by up to 10-FOLD. tHE TECHNOLOGY HAS BEEN LICENSED TO A major international manufacturer of growth factors (PeproTech Inc.), and to a UK-based specialist stem cell company (CellGS Ltd), enabling them to implement new products and business strategies. Through a departmental facility, material is also being sold to external companies and Cambridge Stem Cell Consortium members. In addition, Dr Hyvönen has made his expertise available to biotech companies through consultancy.
Research by the University of Southampton has helped transform the understanding and treatment of chronic lymphocytic leukaemia (CLL), the most common leukaemia, affecting around 2,400 patients each year in the UK and 17,000 in the USA. Southampton's widely cited studies revealing the existence of two subsets of CLL have been crucial in giving clinicians and patients in the UK and overseas a much clearer indication of the likely disease course. The predictive information is now included in all clinical trials and in international guidelines, delivering greatly improved care. The research has also inspired the development of a new drug given "breakthrough" status by the Food and Drug Administration in the United States.
Breakthrough structural and mechanistic work at Oxford University investigating how enzymes catalyse oxidising reactions has had major impacts in biomedicinal fields, including how humans adapt to changes in oxygen availability. Impacts arising from the work since 2008 include the identification of new drug targets for major diseases ranging from anaemia to cancer that are being clinically pursued by pharmaceutical companies (including GSK, Bayer, Astellas, Akebia) and smaller companies (including the Oxford spin out ReOx), and the sale of products including small-molecule probes (e.g. by Tocris, Millipore, Selleck Chem) that are of use in biomedicinal/pharmaceutical research, especially in the emerging field of epigenetics.
Southampton research underpins the clinical development of a new class of anti-cancer monoclonal antibodies (mAb), such as anti-CD40, anti-CD27 and anti-CD20. The most advanced is a next generation, fully human drug, ofatumumab (commercialised by GlaxoSmithKline/Genmab; trade-name Arzerra) approved in Oct 2009 to treat advanced chronic lymphocytic leukaemia. Its approval was based on a 42% response rate in patients who had failed current `best in class' treatment. Arzerra is now a multi-million dollar drug, launched in 26 countries (and growing) and is being used in 19 on-going clinical trials worldwide for diseases ranging from lymphoma to rheumatoid arthritis and multiple sclerosis. Southampton's work has inspired follow-on funding from government and industry in excess of £12m.
Professor Neil Barclay and Dr Nick Hutchings established Everest Biotech Ltd in 2000 in response to the increasing demand for high quality antibodies within the research community. This successful spin-out company has since become a major power in antibody research and production, a position reflected by its portfolio of more than 6,000 antibodies recognising human, mouse and rat proteins, and the generation of 60 new antibodies each month. With offices in the UK and Nepal, Everest Biotech Ltd also benefits one of the poorest communities in the world by providing additional income to hundreds of farmers in the Nepalese foothills.
Research at the University of Oxford's Glycobiology Institute (OGBI) has led to the development of `state-of-the-art' platform technologies for the analysis of oligosaccharides (sugars) that are linked to proteins and lipids. These enabling technologies have had major impacts worldwide on drug discovery programmes, have enabled robust procedures to be developed for the quality control of biopharmaceutical production, and have been widely adopted by the pharmaceutical industry.
Haemophilia, an inherited bleeding disease, is treated by frequent and extremely expensive infusions of recombinant versions of the missing factors. Advances in gene therapy have now been achieved at UCL, with successful treatment of Haemophilia B in 10 severely affected patients. The novel factor IX expression cassette has been patented and licensed to an industrial partner (UniQure). Savings to the NHS in excess of £1.5m have already been made and increase every month. Pre-clinical advances have also been made in Haemophilia A, and the factor VIII expression cassette has been patented and licensed to an industrial partner (BioMarin).
UCL spin-out company BioVex was launched in 1999 to exploit research undertaken by David Latchman at the UCL Medical Molecular Biology Unit, Department of Biochemistry. (This department is now part of the Department of Structural and Molecular Biology, UCL/Birkbeck and Latchman is now Master of Birkbeck.) Biovex worked to develop inactivated herpes simplex viruses as therapies, and a promising dual-action oncolytic vaccine for solid tumours, OncoVEXGM-CSF, was taken into successful Phase II trials. In 2011 the company was bought out by Amgen for $1 billion — still the largest ever cash sale of a UK biotech — and Amgen has now taken this virus into a Phase III trial with promising initial results.
Oxford BioMedica is an established company in the rapidly growing field of gene therapy. Founded by Professors Alan and Sue Kingsman from the Department of Biochemistry at the University of Oxford, it develops, commercialises and manufactures safe and effective vectors for use in gene therapy. Its vector system, known as LentiVector®, is based on the Kingsman's research into the biology of a family of retroviruses known as lentiviruses. The company has a portfolio of over 60 patent families, employs over 80 people and has raised almost £150 million since its foundation. Oxford Biomedica's partners include the major pharmaceutical companies Novartis and Sanofi and its vectors are being used in clinical trials to deliver treatments for leukaemia, Parkinson's disease and disorders of the eye.