Similar case studies

REF impact found 7 Case Studies

Currently displayed text from case study:

Enabling the commercial development of market-leading microcapsule-based products by Procter & Gamble using a novel mechanical analysis technology

Summary of the impact

The impact presented in this case study is the commercialisation of 15 products with perfume microcapsules by Procter and Gamble (P&G), made possible using capsule mechanical strength data provided by Prof Zhibing Zhang's research group at Birmingham. Use of microcapsules gives improved freshness performance, and thus commercial advantage, compared with traditional formulations; they have been incorporated in P&G's four major billion-dollar brands — Downy, Febreze, Lenor and Tide. This has significantly improved their competitiveness enabling P&G to retain their leading position in the USA and Western Europe. A novel micromanipulation technique developed at the University of Birmingham has been used extensively to obtain mechanical properties data for the micro-particles, including microcapsules prepared in Birmingham and provided by companies, which is related to their formulation and processing conditions and end- use performance. In addition, the knowledge generated has helped 15 other companies to commercialise new functional products containing micro-particles.

Submitting Institution

University of Birmingham

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

UK Reactors Safety and Life Extension

Summary of the impact

About 18% of UK electric supply is provided by 14 graphite-moderated Advanced Gas-cooled Reactors (AGRs) and 1 Pressurised Water Reactor (PWR). The AGRs are graphite-moderated, generic in design and the nuclear regulator is concerned that a common safety related fault could lead to immediately shutdown of all AGRs. The development of novel techniques at Manchester has allowed the continued operation helping the operators to establish an expected seven-year life extensions for all AGRs. For the plant operators this represents a potential income of £2.5bn per annum, avoid 30m tonnes CO2 pa and generate supply chain income within the UK of £650m pa and create or protect 2000 jobs.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Materials Engineering

Extending nuclear reactor life by research into radiation damage in graphite

Summary of the impact

This research underpins assessments of nuclear reactor longevity and safety and has contributed to EDF's project to extend the life of nuclear reactors by 100+ reactor-years. So far this project has achieved 48 years or nearly £9bn in benefit. The Sussex contribution is accruing value to the UK economy of an estimated £100M at today's prices, with about £40M of that achieved already. Graphite in nuclear reactors is susceptible to neutron damage, and accurate estimations of the rate of graphite damage in reactors are critical to safety and to predicting reactor lifespan. Research from Sussex has developed models for graphite damage that now underpin one component (of six independent components) of the safety assessments conducted by the nuclear industry for Advanced Gas-cooled Reactors. The research demonstrated that a previous model employed for this purpose was invalid, and developed alternative models that have been adopted by the nuclear industry.

Submitting Institution

University of Sussex

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

High - Strain Materials Characterisation

Summary of the impact

Research undertaken in the University of Cambridge Department of Physics has provided benchmark data on, and fundamental physical insights into, the high strain-rate response of materials, including powdered reactive metal compositions. The data have been used widely by QinetiQ plc. to support numerical modelling and product development in important industrial and defence applications. One outcome has been the development of a reactive metal perforator for the oil industry which significantly outperforms conventional devices. These devices `perforate' the region around a bore-hole, thereby substantially enhancing recovery, particularly in more difficult oil fields, and extending their economic viability. Over a million perforators have been deployed since their introduction in 2007.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

An X-ray tool for the prediction of catastrophic failure during semiconductor manufacture (Jordan Valley)

Summary of the impact

Semiconductor wafers are subject to damage from misaligned handling tools, leading to cracks. Most of these are benign, but a few propagate to cause silicon wafer breakage during high temperature processing, leading to losses in production time costing millions of dollars per year. Research in Durham showed that X-ray Diffraction Imaging can be used to identify which cracks will catastrophically fail. As a consequence, Jordan Valley UK Ltd has designed and already sold over £M [text removed for publication] worth of X-ray imaging tools to the semiconductor industry. The company identifies this product as being critical to its continuation, safeguarding more than 25 jobs, and growth over the past 2 years.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

1. Standards for the Application of Materials in Industry

Summary of the impact

Impact on industry, academia and government institutions from engineering materials research in the Mechanical Engineering department has been delivered through it directly leading to UK, USA and International Standards and Codes relating to three themes:

  • Predicting and assessing the service life of high-temperature components.
  • Determining the fracture resistance of plastics, composites and adhesives.
  • Predicting the catastrophic failure of plastic pipelines.

The results of the research of staff in this unit have led directly to UK, US and International Standards and Codes: ASTM Standards E1457-07 (2012) and E2760-10 (2012); R5 EDF Energy Code of Practice (2012); BS 7910 (2013); ISO 25217 (2009); ISO CD 15114 (2011) and ISO 13477 (2008). These documents all cite peer-reviewed publications by staff from this unit. These Standards and Codes are now the basis of fracture-mechanics methodologies used by leading engineering companies like Airbus, EDF, E.ON, GKN, Rolls-Royce and Vestas, whose commercial success depends upon technological leadership. In this way our research has led to savings by UK industry of many millions of pounds, as detailed in Section 4.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Materials Engineering

SmartPoint: dramatically reducing the failure rate of root canal treatments in orthodontistry

Summary of the impact

A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Health

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies