Similar case studies

REF impact found 26 Case Studies

Currently displayed text from case study:

The use of multilevel statistical modelling has led to improved evidence-based policy making in education and other sectors

Summary of the impact

Since 2008, statistical research at the University of Bristol has significantly influenced policies, practices and tools aimed at evaluating and promoting the quality of institutional and student learning in the education sector in the UK and internationally. These developments have also spread beyond the education sector and influence the inferential methods employed across government and other sectors. The underpinning research develops methodologies and a much-used suite of associated software packages that allows effective inference from complicated data structures, which are not well-modelled using traditional statistical techniques that assume homogeneity across observational units. The ability to analyse complicated data (such as pupil performance measures when measured alongside school, classroom, context and community factors) has resulted in a significant transformation of government and institutional policies and their practices in the UK, and recommendations in Organisation for Economic Co-operation and Development (OECD) policy documents. These techniques for transforming complex data into useful evidence are well-used across the UK civil service, with consequent policy shifts in areas such as higher education admissions and the REF2014 equality and diversity criteria.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Computation Theory and Mathematics, Information Systems

C4 - BUGS (Bayesian inference using Gibbs sampling)

Summary of the impact

The WinBUGS software (and now OpenBUGS software), developed initially at Cambridge from 1989-1996 and then further at Imperial from 1996-2007, has made practical MCMC Bayesian methods readily available to applied statisticians and data analysts. The software has been instrumental in facilitating routine Bayesian analysis of a vast range of complex statistical problems covering a wide spectrum of application areas, and over 20 years after its inception, it remains the leading software tool for applied Bayesian analysis among both academic and non-academic communities internationally. WinBUGS had over 30,000 registered users as of 2009 (the software is now open-source and users are no longer required to register) and a Google search on the term `WinBUGS' returns over 205,000 hits (over 42,000 of which are since 2008) with applications as diverse as astrostatistics, solar radiation modelling, fish stock assessments, credit risk assessment, production of disease maps and atlases, drug development and healthcare provider profiling.

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics

Bristol’s research into multiscale methods enables more realistic modelling of real world phenomena providing benefit to industry, government and society.

Summary of the impact

Wavelets and multiscale methods were introduced and rapidly became popular in scientific academic communities, particularly mathematical sciences, from the mid-1980s. Wavelets are important because they permit more realistic modelling of many real-world phenomena compared to previous techniques, as well as being fast and efficient. Bristol's research into wavelets started in 1993, has flourished and continues today. Multiscale methods are increasingly employed outside academia. Examples are given here of post-2008 impact in central banking, marketing, finance, R&D in manufacturing industry and commercial software, all originating from research at Bristol. Much of the impact has been generated from the original research via software. This software includes freeware, distributed via international online repositories, and major commercial software, such as Matlab (a preeminent numerical computing environment and programming language with over one million users worldwide).

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Computation Theory and Mathematics
Economics: Econometrics

Transforming the efficiency of Ford’s engine production line

Summary of the impact

Through a close collaboration with Ford Motor Company, simulation modelling software developed at the University of Southampton has streamlined the design of the car giant's engine production lines, increasing efficiency and delivering significant economic benefits in three key areas. Greater productivity across Ford Europe's assembly operations has generated a significant amount [exact figure removed] in direct cost savings since 2010. Automatic analysis of machine data has resulted in both a 20-fold reduction in development time, saving a large sum per year [exact figure removed], and fewer opportunities for human error that could disrupt the performance of production lines costing a large sum [exact amount removed] each to program.

Submitting Institution

University of Southampton

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics

Industrial impact of Bayes linear analysis

Summary of the impact

This study demonstrates how Bayes linear methodologies developed at Durham University have impacted on industrial practice. Two examples are given. The approach has been applied by London Underground Ltd. to the management of bridges, stations and other civil engineering assets, enabling a whole-life strategic approach to maintenance and renewal to reduce costs and increase safety. The approach has won a major award for innovation in engineering and technology. The methodology has also been applied by Unilever and Fera to improve methods of assessing product safety and in particular the risk of chemical ingredients in products causing allergic skin reactions.

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Economics: Econometrics

Improving data analysis via better statistical infrastructure

Summary of the impact

A generalized additive model (GAM) explores the extent to which a single output variable of a complex system in a noisy environment can be described by a sum of smooth functions of several input variables.

Bath research has substantially improved the estimation and formulation of GAMs and hence

  • driven the wide uptake, outside academia, of generalized additive models,
  • increased the scope of applicability of these models.

This improved statistical infrastructure has resulted in improved data analysis by practitioners in fields such as natural resource management, energy load prediction, environmental impact assessment, climate policy, epidemiology, finance and economics. In REF impact terms, such changes in practice by practitioners leads ultimately to direct economic and societal benefits, health benefits and policy changes. Below, these impacts are illustrated via two specific examples: (1) use of the methods by the energy company EDF for electricity load forecasting and (2) their use in environmental management. The statistical methods are implemented in R via the software package mgcv, largely written at Bath. As a `recommended' R package mgcv has also contributed to the global growth of R, which currently has an estimated 1.2M business users worldwide [A].

Submitting Institution

University of Bath

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Economics: Econometrics

Novel Statistical Methods for Optimising Production of Disc Brake Pads

Summary of the impact

Novel statistical methods were developed in order to address the needs of Federal-Mogul Corporation (FM), an innovative and diversified $6.9bn global component supplier to vehicle manufacturers, with a broad range of customers in the industrial sector. During 2012, the research underpinned the production of new disc brake pad products for Audi, BMW, Ford, GM, Mercedes Benz and VW. The research has already resulted in significant benefits for the company by improving the manufacturing process, allowing it to be optimised to a mean specification, and by reducing the production cycle time by 30%.

Submitting Institution

University of Manchester

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Econometrics

Policy implications of uncertainties related to climate change

Summary of the impact

The Climate Change Act, 2008, constructed a legally-binding long-term framework for the UK to cut greenhouse gas emissions and a framework for building the UK's ability to adapt to a changing climate. The Act requires a UK-wide climate change risk assessment (CCRA) that must take place every five years and a national adaptation programme (NAP), setting out the Government's objectives, proposals and policies for responding to the risks identified in the CCRA. The CCRA, and thus the NAP, drew heavily on the uncertainty analysis for future climate outcomes, published in 2009 by the Met Office as the UK Climate Projections UKCP09, which in turn drew heavily on research into the Bayesian analysis of uncertainty for physical systems modelled by computer simulators carried out at Durham University. A wide range of industries and public sector organisations likely to be affected by climate change have consulted with the Met Office on UKCP09 to inform decisions on policy and investment, involving billions of pounds, in sectors as diverse as flood defence, transport, energy supply and tourism.

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics

Economical Experiments for the Fuel Efficiency Industry

Summary of the impact

The petrochemical industry is eager to develop advanced fuels which improve fuel efficiency both for economic and environmental reasons. Statistics plays a crucial role in this costly process. Innovative Bayesian methodology developed by Gilmour was applied at Shell Global Solutions to data from fuel experiments to solve a recurring statistical problem. The usefulness of this approach to the wider petrochemical industry has been recognized by the industry-based Coordinating European Council (CEC) for the Development of Performance Tests for Fuels, Lubricants and other Fluids, who in their statistics manual have included Gilmour's method as an alternative to procedures in the ISO 5725 standard.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics, Econometrics

Statistical methods are helping to control the spread of epidemics

Summary of the impact

In a series of papers from 2003, Gibson (Maxwell Institute) and collaborators developed Bayesian computational methods for fitting stochastic models for epidemic dynamics. These were subsequently applied to the design of control programmes for pathogens of humans and plants. A first application concerns the bacterial infection Clostridium difficile in hospital wards. A stochastic model was developed which was instrumental in designing control measures, rolled out in 2008 across NHS Lothian region, and subsequently adopted across NHS Scotland. Incidence in Lothian reduced by around 65%, saving an estimated £3.5M per annum in treatment and other costs, reducing mortality and improving patient outcomes, with similar impacts elsewhere in Scotland. A second application concerns the spread of epidemics of plant disease in agricultural, horticultural and natural environments. Models developed in collaboration with plant scientists from Cambridge have been exploited by the Department for Environment, Food and Rural Affairs (Defra) and the Forestry Commission under a £25M scheme, initiated in 2009, to control sudden oak death in the UK, and by the United States Department of Agriculture to control sudden oak death in the USA.

Submitting Institutions

University of Edinburgh,Heriot-Watt University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Health

Research Subject Area(s)

Mathematical Sciences: Statistics

Filter Impact Case Studies

Download Impact Case Studies