Similar case studies

REF impact found 27 Case Studies

Currently displayed text from case study:

Changing Clinical Practice from Imatinib to Nilotinib in Chronic Myeloid Leukaemia (CML)

Summary of the impact

Since 2000, the tyrosine kinase inhibitor (TKI) imatinib has transformed CML from a fatal disease for half of patients within 5 years, to a chronic disease whereby ~ 90% of patients lead normal lives for at least 9 years. This remarkable transformation has spawned a second phase of clinical and translational research aiming to cure CML. The University of Liverpool (UoL) CML research group headed by Prof Richard Clark has been integral in both phases, particularly in the development of the second generation TKI nilotinib. Important contributions have also shed light on CML biology and the possible mechanism of acute leukaemic transformation (blast crisis).

Submitting Institutions

University of Liverpool,Liverpool School of Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Oncology and Carcinogenesis

Invention and Development of a Globally Recognised Molecular Method of Monitoring Disease Response in Chronic Myeloid Leukaemia

Summary of the impact

The change in outcome for patients with chronic myeloid leukaemia (CML) is the outstanding cancer success story of the 21st century. All newly diagnosed patients now receive highly effective targeted life-long therapy with tyrosine kinase inhibitors and their response is monitored by a molecular test invented at Imperial College in the 1990s, to monitor patients after transplant. Improvements in methodology pioneered by Imperial staff, refined the test such that it is now a robust and accurate quantitative reflection of residual disease, and now in 2013 it is routinely used in both developed and developing countries to diagnose, determine management and predict outcome in CML.

Submitting Institution

Imperial College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Immunology, Oncology and Carcinogenesis

06_A portfolio of stem cell culture products is sold worldwide.

Summary of the impact

Impact on commerce: Five stem cell culture products derived from UoE research have been brought to a global market since 2009 through the US based company StemCells Inc. StemCells Inc strategically acquired Stem Cell Sciences plc (SCS), with its licensed portfolio of UoE patents, to position themselves as a world leader in cell-based medicine. This enabled them to develop media and reagent tools in order to pursue nearer-term commercial opportunities. These products include the gold standard media for embryonic stem cell culture, iSTEM.

Beneficiaries: Commercial companies and users of the stem cell culture products.

Significance and Reach: iSTEM is the gold standard media used worldwide by researchers for maintaining mouse ES cells in their basal, non-differentiated state. Products are sold worldwide through global life sciences companies.

Attribution: All research was carried out at UoE between 1994 and 2006 (published up to 2008), led by Prof Austin Smith. Collaboration with Prof Philip Cohen, University of Dundee, on one paper (2008).

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics

15: Opening up the opportunities for stem cell therapies for neurodegenerative diseases

Summary of the impact

Neural stem cells offer enormous therapeutic potential for stroke but they require regulatory approval. Researchers at King's College London (KCL) devised a technology to immortalise stem cells, generated clinical-grade neural stem cell lines and demonstrated efficacy in an animal model of stroke. KCL research underpins the first approvals in the UK for a therapeutic stem cell product. This led to an industry-sponsored clinical trial of a stem cell therapeutic that has demonstrated vital improvement in all the first five stroke patients treated. KCL research has made a significant impact by considerably reducing the timetable for delivering potential therapies which will affect the life sciences industry and the process now in place acts as a model for other technology developments in this area.

Submitting Institution

King's College London

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Technology: Medical Biotechnology
Medical and Health Sciences: Neurosciences

Therapeutic application of skeletal stem cells for patient benefit

Summary of the impact

Seven patients with avascular necrosis of the femoral head and bone cysts have been treated successfully with skeletal stem cell therapy, developed by Southampton researchers, resulting in an improved quality of life. This unique multi-disciplinary approach linking nano-bioengineering and stem cell research could revolutionise treatment for the 4,000 patients requiring surgery each year in the UK and reduce a huge financial burden on the NHS. The work has been granted three patents and the team are in discussions on development of the next generation of orthopaedic implants with industry.

Submitting Institution

University of Southampton

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Innovations in the treatment of chronic myeloid leukemia have almost doubled 5-year survival rates.

Summary of the impact

A new class of drug known as tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia (CML) has been tested in Newcastle-led international clinical trials. One of these drugs, imatinib, was found to almost double five-year survival rates and significantly improve quality of life with few side effects. Subsequent follow up studies found an estimated eight-year overall survival of 85%. Imatinib is now recommended in national and international guidelines and is used increasingly to treat patients with CML.

Submitting Institution

Newcastle University

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Oncology and Carcinogenesis

The Development of Stem Cells for Regenerative Medicine

Summary of the impact

Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were generated in Sheffield by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for £0.75M in 2009. As a result, a clinical grade derivative of SHEF-1 has been developed and approved for clinical trials for treating age-related macular degeneration (AMD). In addition, Sheffield research has led to the licensing and sales of key hESC marker antibodies for stem-cell quality control. Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports and providing evidence to a Parliamentary committee. The case study has significant impact on commerce, health and welfare and public policy.

Submitting Institution

University of Sheffield

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Technology: Medical Biotechnology

05_Patients’, policy-makers’, educators’ and the public’s understanding of stem cell research is increased through in-depth engagement.

Summary of the impact

Impact on society, culture and creativity; health and welfare; practitioners: Extensive public engagement with a broad target audience has increased understanding of the hopes and hypes generated by stem cell research at UoE and elsewhere, and has provided resources for practitioners to deliver high-quality public engagement and science education.

Beneficiaries: Educators, teacher trainers, science communicators, journalists; patients; students; officials in the European Commission, the European Parliament and by extension constituents.

Significance and Reach: This programme has promoted informed decision-making among non-specialists and public acceptance of stem cell-based research and future therapies in Europe (compared for instance to the USA). The project is focused on Europe, but participation is world-wide. 767,000 unique visitors have accessed the www.eurostemcell.org website. The educational tools have been used by 11,000 pupils, and engaged 20,100 participants at festivals and science centres. More than 740,000 individuals world-wide have viewed the films (>240,000 confirmed online, film showings and DVD; estimated >500,000 TV audience).

Attribution: The programme reflects a range of stem cell research, substantially based on underpinning research carried out at UoE led by Professors Austin Smith and Ian Chambers. The outreach programme is led by Professor Clare Blackburn. Leadership, management, content identification, content format, editorial input, and evaluation of the outreach programme are all led at the University of Edinburgh.

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

11_Plant stem cell culture is used for the manufacture of biological products.

Summary of the impact

Impact on the economy and on commerce Using novel technology developed with UoE researchers to isolate and culture cambial meristematic cells (CMCs), Korean biotech company Unhwa Corp tripled their production of CMCs and have brought sixteen skincare products and three nutritional products to a global market. The impact of this technology on the South Korean economy has been recognised by the Korea Ministry of Knowledge Economy.

Beneficiaries: Korean Biotech company Unhwa Corp, and international consumers of their nutrition and cosmetic products.

Significance and Reach: The technology provides a platform for the cost-effective, environ- mentally friendly and sustainable production of plant stem cells. The business strategy and operations of Unhwa Corp changed as a direct result of the research: Unhwa invested [text removed for publication] in 2011-13 to construct a base in Jeojuni, Korea for a new production facility. Products arising from this are sold world-wide (Unhwa has subsidiaries on 5 continents) and have generated [text removed for publication] profit, with a doubling of company turnover since the key research was carried out.

Attribution: Professor Gary Loake, UoE, led the research in collaboration with Unhwa Corp, from 2006 to 2010 and ongoing.

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Technology: Medical Biotechnology

Commercial Development of Stem Cells for Regenerative Medicine

Summary of the impact

Research on stem cells has led to an explosion of interest in the field of regenerative medicine, with the potential for new clinical interventions and treatments. Pioneering research in Sheffield led to the founding of a spin-out company, Axordia, in 2001, focussed on the applications of human embryonic stem cells (hESC) in medicine. Several hESC lines (including SHEF-1) were developed by Axordia, which was sold to Intercytex in 2008 for £1.68M. These Sheffield-derived hESC lines were then sold on to a major pharmaceutical company, Pfizer, for $0.75M in 2009. As a result, a clinical grade derivative of SHEF1 has been developed and approved for clinical trials for treating Age Related Macular Degeneration (AMD). Finally, Sheffield researchers have informed emerging regulatory guidelines about the safety of hESC regenerative medicine applications by authoring reports for government and research councils.

Submitting Institution

University of Sheffield

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Ophthalmology and Optometry

Filter Impact Case Studies

Download Impact Case Studies