Similar case studies

REF impact found 23 Case Studies

Currently displayed text from case study:

Advanced Radiometer Instrumentation for Earth Observation

Summary of the impact

Research on Frequency Selective Surface (FSS) structures has led to major advances in the design and manufacture of the world's most advanced payload instrumentation for use in Earth observation satellites. This technology has provided the core element of the radiometer instrumentation needed for more accurate global weather forecasts and better understanding of climate change. The advances described have made it possible to combine all of the different functions of the MetOP-SG radiometer into one instrument, thereby halving the footprint of the satellite payload resulting in a [text removed for publication] cost saving.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Supporting e2v Ltd. in developing capability as a supplier for major space science missions

Summary of the impact

Research conducted within the Department of Space and Climate Physics at UCL has had a significant impact upon e2v Ltd., a manufacturer of charge-coupled devices (CCDs). Through working collaboratively with e2v, UCL has helped the company to secure major contracts and business [text removed for publication]. This includes two contracts for the supply of CCDs for the European Space Agency (ESA) missions Gaia (€20 million) and Euclid (€10 million). Furthermore, the symbiotic relationship has contributed to the establishment of e2v as Europe's leading supplier of high-quality CCDs for space science applications and has underpinned an improved understanding of device design and optimisation within the company.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Changing the way the European space industry verifies the safety of complex systems

Summary of the impact

The difficulty of certifying the safety (often termed Verification and Validation — V&V) of increasingly complex and more autonomous Guidance, Navigation and Control (GNC) systems is now widely accepted to be a serious threat to the success of future space missions. In response to this threat, the European Space Agency has funded Dr Prathyush P Menon and his team to develop a suite of mathematical tools for the V&V of advanced GNC systems. These tools have now been widely adopted throughout the European Space industry, and have been successfully applied by major companies such as Astrium, Thales-Alenia and GMV to systems ranging from flexible and autonomous satellites, to launch vehicles and hypersonic re-entry vehicles.

Submitting Institution

University of Exeter

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering
Economics: Applied Economics

The National Space Centre (NSC)

Summary of the impact

The National Space Centre (NSC), sited in the Abbey Meadows area of the City of Leicester, combines elements of museum and visitor attraction with an educational mission to attract 8-14 year olds to the Science, Technology, Engineering and Mathematics (STEM) subjects using the inspiration of space science and exploration. Since its opening on June 30th 2001, the NSC has welcomed almost 2.5 million visitors to its galleries and full-dome planetarium. Space science research within the UoA was a driving force in the establishment of the NSC and continues to contribute to its success. Members of the Unit serve as non-executive Directors on the NSC Operating Company (OPCO) Board and as Trustees, while others contribute to its Space Now public outreach programme and to the Space Academy teacher engagement project which began in the East Midlands region, but now has national scope. The claimed impact is not only related to outreach and quantitative educational outcomes, but also to long-term economic benefit to the City of Leicester, through the regeneration of a brownfield site in a disadvantaged inner-city district, now featuring the development of a science park with the National Space Centre as its focus.

Submitting Institution

University of Leicester

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Engineering: Aerospace Engineering

Space Debris in Geostationary Earth Orbit

Summary of the impact

The University of Southampton's research into space debris has made a vital contribution to space policy by addressing an issue identified by the United Nations (UN) as having important implications for all humanity. This research has played a key role in advising policymakers "on how best to manage the orbital environment in a sustainable manner for generations to come" (page 52, UK in Space, British National Space Centre, 2009). Challenging prevailing theories, researchers influenced Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation (SDM) guidelines, resulting in the implementation of sustainable practices by satellite operators in Geostationary Earth Orbit (GEO) requiring an investment by them of an estimated £1 billion since 2008.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Political

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Medical and Health Sciences: Public Health and Health Services

An Alternative Nuclear Future

Summary of the impact

The University of Huddersfield leads the UK in the development and advocacy of the thorium nuclear fuel cycle as an alternative to the uranium/plutonium cycle. We have set the design parameters for feasible thorium fuelled accelerator driven subcritical reactor assemblies for power generation and waste management and for fertile to fissile conversion of thorium [A]. Our high media profile [G,H] and extensive interactions with the public [I] and policy makers both in the UK and US [B,C,E,F] has led to growing acceptance of thorium as a realistic, safer, cleaner and proliferation resistant alternative fuel for nuclear fission reactors. Consequently our research is now influencing nuclear policy both at home and overseas [D,F].

Submitting Institution

University of Huddersfield

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering

Enabling space companies to deliver contracts and supporting growth of the space sector

Summary of the impact

UCL's research and development programme in space science and engineering enabled it to complete four major contracts with European and Canadian space companies between 2009 and 2011. These contracts were for the supply of equipment that will fly on European and Indian space missions, and for support of the ground testing of those space missions. The fact that these contracts were won by UCL in a competitive environment against low-cost industrial providers demonstrates that customers value the capability that UCL possesses. By acting as a specialist provider within the UK space sector supply chain, UCL enabled the prime contractors European Astrium Aerospace and Canadian Routes AstroEngineering Ltd. to deliver substantial commercial contracts with space agencies. Its provision of specialist input into these major contracts enabled UCL to also directly support the growth of the commercial space sector.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Novel orbits for solar sail spacecraft: adoption by international space agencies and influence on their policies and investment

Summary of the impact

An ambitious programme of research has discovered entirely new families of orbits for solar sails, spacecraft propelled by the pressure of sunlight. The unique applications of these new orbits for space weather, Earth observation and communications are directly influencing top-level space agency thinking and have unlocked industry investments to bring the technology to flight readiness. The new families of orbits are now embedded in agency roadmaps (NASA, European Space Agency (ESA), German Space Agency (DLR)) and help underpin a $20M NASA solar sail demonstration mission. The supporting research has substantial reach due to its impact across a broad range of sectors and has international significance through industry-led technology demonstration missions.202f

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Engineering: Aerospace Engineering

Planetary Exploration Based Camera Technology for Precision Agriculture Applications

Summary of the impact

The Space Robotics unit is heavily involved with the ESA/Roscosmos 2018 ExoMars rover mission, and is responsible for the radiometric and colourimetric calibration and image processing for two of the ExoMars science cameras during mission operations. Camera emulators have been built which has led to novel hyperspectral camera technology being developed. A terrestrial aerial version of this camera has been deployed in an unmanned aerial system (UAS) used for advanced remote sensing for precision agriculture applications. Impact on practitioners in this application area has emerged together with economic impact via Welsh Government funding. The ExoMars related research has led to impact in the area of society, culture and creativity.

Submitting Institution

Aberystwyth University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Technology: Communications Technologies

Advances in Gamma-Ray Detection and Imaging

Summary of the impact

The University of Southampton's distinguished body of work on the design of technology for gamma-ray detection and imaging has informed new counter-terrorism practices. Technological advances arising from the research have been crucial to delivering significant benefits in the fields of homeland security and nuclear safety — the latter particularly in the wake of the 2011 Fukushima disaster. A spin-out company, Symetrica, currently employs 26 people in the UK and the USA, has a forecast turnover of more than £10 million for 2013-14 and has been recognised as an example of best practice. It is a technological leader in the field of radioactive isotope identification.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Filter Impact Case Studies

Download Impact Case Studies