Log in
Impact type: Public Policy
Significance: The research provided evidence for formulation of government policies to ameliorate poor air quality, to which fine particulate matter (PM2.5), O3 and NO2 are the most important contributors; PM2.5 alone reduces average life expectancy in the UK by 6 months and costs £9bn-£20bn a year. The research has been incorporated into UK national guidance and policy-evidence documents for Defra, the Health Protection Agency, and the Environment Agencies.
Beneficiaries are the public and the environment.
Research; date; attribution: EaStCHEM research (1995-2011) (a) established reliable techniques to measure NO2 for a national protocol, and (b) quantified the impact of pollutant emissions on PM2.5 and O3 concentrations, and on hospital admissions and deaths. Heal (EaStCHEM) led the research and wrote, collaboratively in some cases, the reports and the work cited.
Reach: UK wide.
A sustained programme of epidemiological research at St George's, spanning 20 years, has informed air pollution control policies in the UK and internationally. Time-series studies of the acute health effects of daily fluctuations in air pollutants, initially in London, were extended to Europe-wide collaborations, trans-Atlantic comparisons and studies in Asian cities. Publication bias has been explored systematically in meta-analyses of published time-series results, and the adverse effects of different particulate fractions compared in a UK setting. This evidence base has contributed substantially to the current UK Air Quality Strategy and informs ongoing debates about health impacts of shorter-lived "greenhouse" pollutants.
Evidence from research at UWE Bristol has enabled UK local and national governments and international governments (South Africa, Nigeria) to enhance their processes and procedures for managing air quality. UWE researchers have contributed to the policy and technical guidance issued by UK Governments, and they have directly advised the UK Government and devolved national and London administrations on legislation, regulation and official guidance. The research has contributed to the widespread recognition of the spatial extent of air quality problems, ensuring continued support of air quality management at a local level. The research activity and experience gained has been shared through international agencies, learned societies and interest groups. This extends to the EU, China, Brazil, and India, and specifically the Republic of South Africa through the development of the National Framework for Air Quality Management and in Nigeria through collaboration with the National Space Research and Development Agency.
Mineral separation by froth flotation is the largest tonnage separation process in the world, and is used to recover the very small fraction (<0.5%) of valuable mineral from the mined ore. Typically, 5-15% of the valuable minerals are not recovered due to sub-optimal process settings, most important of which is the air rate. A methodology to determine the optimal air rate range to use, Peak Air Recovery (PAR), was developed by the Froth and Foam Research Group at Imperial College London.
Anglo American Platinum produces 40% of the world's platinum. They use the PAR methodology on all their flotation plants to establish to air rate control limits, tightening the operating range and improving the separation performance. Rio Tinto annually produce 300 000 tons of copper and 500 000 oz gold from their Kennecott Copper mine. They have implemented PAR as a control strategy, and statistical comparative tests have shown an increase in copper and gold recovery from this mine alone of the order of 1%, with a nominal value of approximately $30m per annum.
Working closely with scientists at the United States Environmental Protection Agency (USEPA), the University of Southampton has developed new methods for space-time modelling that have trebled the accuracy of air pollution forecasts. The USEPA has adopted the research as its official forecasting method to protect the American public and agriculture. More than 19 million children and 16 million adult Americans suffering from respiratory conditions such as asthma now benefit by being able to adjust their outdoor activities based on the forecasts, and improved data has fed into policy debates on carbon emission regulations. Success in the USA has led the EPSRC to fund a similar project in the UK and Australia's national science agency is using Southampton-developed software for its air pollution forecasts.
Methods for valuing quality of life developed by Professor Devlin at City University London are used internationally to help governments make healthcare decisions. Her research focuses on a widely-used questionnaire for measuring patient reported health, the European Quality of Life 5-Dimensions (EQ-5D). Government organisations routinely use the EQ-5D to judge whether new medicines work and are cost-effective. Over 15 countries are undertaking EQ-5D studies using Professor Devlin's methods to inform decisions on pricing and provision of new medicines. These developments have been achieved through active dissemination to the academic community and governments and through Professor Devlin's scientific leadership of the European Quality of Life (EuroQol) Group. The impact of this research is highly significant in improving health and health care decision-making and has had wide reach throughout the UK and in many other countries.
The 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland were stark reminders that global society is increasingly vulnerable to volcanic hazards. Research at the University of Leeds has shown that volcanic gases and airborne particles could be a significant health hazard to humans — potentially more fatal than seasonal `flu. Leeds scientists used computer models to demonstrate that a long-lasting, gas-rich eruption in Iceland could degrade air quality and lead to well over 100,000 deaths across Europe. In January 2012, the number of potential fatalities was used as evidence by the UK government for the decision to add large-magnitude effusive Icelandic eruptions to the UK National Risk Register of Civil Emergencies as a high priority risk with potentially widespread effects on health, agriculture and transport. Leeds researchers continue to advise the UK government on the mitigation of potential volcanic hazards through the Civil Contingencies Secretariat.