Similar case studies

REF impact found 49 Case Studies

Currently displayed text from case study:

Exploiting nonlinearity in operational data assimilation for weather prediction

Summary of the impact

Data assimilation is playing an ever increasing role in weather forecasting. Implementing four- dimensional variational data assimilation (4DVAR) is part of the long term strategy of the UK Met Office.

In this case study, an idealised 4DVAR scheme, developed by a team from the Universities of Surrey and Reading working with the UK Met Office, based on the integration of Hamiltonian dynamics and nonlinearity into data assimilation, has now been taken up by the Met Office. It is being used to evaluate options for improving operational 4DVAR. The simplicity of the scheme developed by this team has facilitated careful analyses of some generic problems with the operational model. The outcome includes direct impact on the environment and indirect impact on the economy, both through improvements in weather forecasting.

Submitting Institution

University of Surrey

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences
Economics: Econometrics

Now-Casting

Summary of the impact

Now-casting is the prediction of the present, the very near future, and the very recent past. It has been developed within a research programme led by Lucrezia Reichlin at LBS. It is relevant because key economic statistics, particularly quarterly measures such as GDP, are available only with a delay. Now-casting exploits information which is published early and at higher frequencies than the target variable and generates early estimates before the offb01cial fb01gures become available.

Now-casting has signifb01cant infb02uence and impact. The techniques reported in this case study are in widespread use by central banks and policy institutions. Furthermore, this research has achieved successful commercial impact via Now-Casting Economics Limited.

Submitting Institution

London Business School

Unit of Assessment

Business and Management Studies

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Econometrics

Ocean and climate forecasting improved by developments in data assimilation

Summary of the impact

Ocean circulation accounts for much of the energy that drives weather and climate systems; errors in the representation of the ocean circulation in computational models affect the validity of forecasts of the dynamics of the ocean and atmosphere on daily, seasonal and decadal time scales. Research undertaken by the University of Reading investigated systematic model errors that resulted from data assimilation schemes embedded in the key processes used to predict ocean circulation. The researchers developed a new bias correction technique for use in ocean data assimilation that alleviates these errors. This has led to significant improvements in the accuracy of the forecasts of ocean dynamics. The technique has been implemented by the Met Office and by the European Centre for Medium Range Weather Forecasting (ECMWF) in their forecasting systems, resulting in major improvements to the prediction of the weather and climate from oceanic and atmospheric models. The assimilation technique is also leading to better use of expensively acquired satellite and in-situ data and improving ocean and atmosphere forecasts used by shipping and civil aviation, energy providers, insurance companies, the agriculture and fishing communities, food suppliers and the general public. The impact of the correction procedure is also important for anticipating and mitigating hazardous weather conditions and the effects of long-term climate change.

Submitting Institution

University of Reading

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences, Oceanography

Data maps with applications to medical diagnostics and monitoring

Summary of the impact

Advanced technologies for data visualisation and data mining, developed in the Unit in collaboration with national and international teams, are widely applied for development of medical services. In particular, a system for canine lymphoma diagnosis and monitoring developed with [text removed for publication] has now been successfully tested using clinical data from several veterinary clinics. The risk maps produced by our technology provide early diagnosis of lymphoma several weeks before the clinical symptoms develop. [text removed for publication] has estimated the treatment test, named [text removed for publication], developed with the Unit to add [text removed for publication] to the value of their business. Institute Curie (Paris), applies this data mapping technique and the software that has been developed jointly with Leicester in clinical projects.

Submitting Institution

University of Leicester

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics, Statistics
Information and Computing Sciences: Computation Theory and Mathematics

Transforming the efficiency of Ford’s engine production line

Summary of the impact

Through a close collaboration with Ford Motor Company, simulation modelling software developed at the University of Southampton has streamlined the design of the car giant's engine production lines, increasing efficiency and delivering significant economic benefits in three key areas. Greater productivity across Ford Europe's assembly operations has generated a significant amount [exact figure removed] in direct cost savings since 2010. Automatic analysis of machine data has resulted in both a 20-fold reduction in development time, saving a large sum per year [exact figure removed], and fewer opportunities for human error that could disrupt the performance of production lines costing a large sum [exact amount removed] each to program.

Submitting Institution

University of Southampton

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics

Allowing for Model Uncertainty and Data Revisions in Central Banks’ Forecasting and Policy Analysis

Summary of the impact

Garratt's research on methods for quantifying the uncertainty surrounding macroeconomic forecasts, uncertainty which arises from not knowing the true model of the economy and from having to use inaccurate data, has been applied by Central Banks and national statistical agencies in their forecasting exercises and their analysis of policy interventions. Notably, Norges Bank (the central bank of Norway) has developed a system called the System for Averaging Models, which they use when they make macroeconomic forecasts and when they predict the effects of possible monetary policy actions, which incorporates Garratt's results.

Garratt's research provides new methods to allow for uncertainty about the 'true' model by using combinations of different possible models, when making forecasts. His research provides new procedures to take `data uncertainty' into account, when forecasts have to be based on real-time data (that is, inaccurate data which is available to the policymaker when a forecast is produced but which is revised later on). Garratt's research quantifies the effect of this uncertainty on forecasts by constructing probability density functions. Central banks and statistical agencies have applied his findings when making forecasts and undertaking policy analysis. Garratt's research has been disseminated through refereed journal articles, conference presentations, consultancy work with policy makers, and presentations to policy makers, including an invited presentation to HM Treasury.

Submitting Institution

Birkbeck College

Unit of Assessment

Economics and Econometrics

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics, Econometrics

Improving Barclays Bank's management of its exposure to Counterparty Credit Risk

Summary of the impact

In response to the deficiencies in bank risk management revealed following the 2008 financial crisis, one of the mandated requirements under the Basel III regulatory framework is for banks to backtest the internal models they use to price their assets and to calculate how much capital they require should a counterparty default. Qiwei Yao worked with the Quantitative Analyst — Exposure team at Barclays Bank, which is responsible for constructing the Barclays Counterpart Credit Risk (CCR) backtesting methodology. They made use of several statistical methods from Yao's research to construct the newly developed backtesting methodology which is now in operation at Barclays Bank. This puts the CCR assessment and management at Barclays in line with the Basel III regulatory capital framework.

Submitting Institution

London School of Economics & Political Science

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics, Econometrics

Improving Social Care Call Centre Operational Effectiveness

Summary of the impact

Targeted Projection Pursuit (TPP) — developed at Northumbria University — is a novel method for interactive exploration of high-dimension data sets without loss of information. The TPP method performs better than current dimension-reduction methods since it finds projections that best approximate a target view enhanced by certain prior knowledge about the data. "Valley Care" provides a Telecare service to over 5,000 customers as part of Northumbria Healthcare NHS Foundation Trust, and delivers a core service for vulnerable and elderly people (receiving an estimated 129,000 calls per annum) that allows them to live independently and remain in their homes longer. The service informs a wider UK ageing community as part of the NHS Foundation Trust.

Applying our research enabled the managers of Valley Care to establish the volume, type and frequency of calls, identify users at high risk, and to inform the manufacturers of the equipment how to update the database software. This enabled Valley Care managers and staff to analyse the information quickly in order to plan efficiently the work of call operators and social care workers. Our study also provided knowledge about usage patterns of the technology and valuably identified clients at high risk of falls. This is the first time that mathematical and statistical analysis of data sets of this type has been done in the UK and Europe.

As a result of applying the TPP method to its Call Centre multivariate data, Valley Care has been able to transform the quality and efficiency of its service, while operating within the same budget.

Submitting Institution

Northumbria University Newcastle

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

CCPN: A novel approach to data exchange between software applications

Summary of the impact

Researchers in Cambridge have developed a data standard for storing and exchanging data between different programs in the field of macromolecular NMR spectroscopy. The standard has been used as the foundation for the development of an open source software suite for NMR data analysis, leading to improved research tools which have been widely adopted by both industrial and academic research groups, who benefit from faster drug development times and lower development costs. The CCPN data standard is an integral part of major European collaborative efforts for NMR software integration, and is being used by the major public databases for protein structures and NMR data, namely Protein Data Bank in Europe (PDBe) and BioMagResBank.

Submitting Institution

University of Cambridge

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computer Software, Information Systems

UOA10-12: Billmonitor: predicting the best mobile phone contract for users

Summary of the impact

Since its launch in 2009, the mobile phone package price comparison tool Billmonitor has identified £35 million worth of savings available to the 110,000 users whose bills have been analysed. It was the first price comparison tool to be accredited by Ofcom and it has been widely praised in the media. Exploiting techniques that they had developed for applications in finance and genetics, University of Oxford researchers Chris Holmes and Nicolai Meinshausen developed the statistical algorithms underpinning the package, which uses simulation-based inference and careful statistical modelling to analyse users' phone bill data. It searches over 2.4 million available packages to identify the best mobile phone deal for each user's particular pattern of usage. Widely quoted in the press, reports in 2011 and 2012 from the Billmonitor team estimated that approximately three quarters of mobile phone customers are on the wrong tariff, with an overspend of around 40%.

Submitting Institution

University of Oxford

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Econometrics

Filter Impact Case Studies

Download Impact Case Studies