Log in
Plymouth University was the first to develop methods for identifying supercomplex `unresolved complex mixtures' of organic chemicals, including naphthenic acids. The chemicals are of particular environmental concern (e.g. in Canada because of their production during exploitation of the oil sands and globally as they result from spillages of petroleum such as in the Deepwater Horizon spill). The methods are now used by government agencies such as Environment Canada to monitor naphthenic acid pollutants. A consortium of international oil industries (e.g., BP, Chevron, Total) also now use Rowland's data to model oil pipeline blockage problems.
The field of conceptual chemical process design as practiced industrially has been influenced significantly by the outputs from the Centre for Process Integration (CPI) at Manchester. Process Integration Ltd (PIL) was spun-out from Manchester and currently employs over 50 staff globally, who have conducted projects that have resulted in annual cost savings of hundreds of millions of US dollars. The application of CPI technology has led to significant reductions in both energy costs and emissions of greenhouse gases. Since 2008 ca. US$350m of savings have been realized through the exploitation of CPI technology with US$1.4m generated from software sales.
The impact presented is the use of research carried out in the School of Chemical Engineering by a range of multinational food industries (inc. Unilever, Cargill, PepsiCo) to engineer a series of fat-reduced foods such as low fat spreads (LFS), dressings, margarine, sauces and mayonnaise. This has allowed them to build up a portfolio of novel low fat products; this portfolio would be much reduced or in some cases non-existent without the research contribution and capability generated by the Birmingham group as stated by Peter Lillford5.1 (former Chief Scientist, Unilever) and John Casey, (Vice President Biological Sciences, Unilever)5.2. These products are a significant and growing market segment e.g. LFS now outsell margarine/butter in a number of countries and are estimated to be worth globally 10 Billion Euros per year between 2008-13. Thus these products are having a significant impact on the industries' profitability. In addition, consumption of low fat foods act to tackle obesity with knock on effects for government (health service, lost GDP etc.) and the community as a whole.
Research at the Department of Engineering Science has led to step changes in the way industrial membrane filtration plants are designed and operated . Based on some key research results that have successfully tackled membrane fouling problems, the work has triggered rapid uptake of membrane-based technologies that are more energy-efficient than traditional processes. Water companies are among those achieving both economic and the environmental benefits, and the research has played a key role in the membrane bioreactor (MBR) market, which is now growing at over 10% a year, and in the global desalination market which exceeds US$19 billion, according to GMR Data (2012) [13].
ERPE research led to the following impacts in the REF2014 period:
Through research carried out under an EPSRC Teaching Company (KTP) award, we assisted an SME, CellPath, to develop the capacity to manufacture a novel set of dyes (Ortho Stains) for use in the Papanicolaou cervical smear test and other histological procedures. The company, previously mainly known for manufacture and sales of laboratory plastics etc, rapidly become the UK market leader in cytology stains, with over 50% of the domestic market, and exports to Finland, France, Italy, Japan, Norway, Sweden and the USA. As a result the company has increased turnover by 400% and the workforce has grown from 5 to 65 employees.
Fluid modelling approaches devised by the Materials and Engineering Research Institute's (MERI's) materials and fluid flow modelling group have impacted on industrial partners, research professionals and outreach recipients. This case study focuses on economic impacts arising from improved understanding which this modelling work has given of commercial products and processes. These include: metal particulate decontamination methods developed by the UK small company Fluid Maintenance Solutions; liquid crystal devices (LCDs) manufactured by the UK SME ZBD Displays; and an ink-droplet dispenser module originally invented at the multinational Kodak. Additionally, the modelling group's computer simulation algorithms have been adopted by industrial research professionals and made available via STFC Daresbury's internationally distributed software package DL_MESO. Finally, the group has developed, presented and disseminated simulation-based materials and visualisations at major public understanding of science (PUS) events.
The cost of goods is an especially important issue in developing commercially available agrochemicals, which must be manufactured on a large scale. Richard Compton's research at the University of Oxford has led to a step change in the understanding of heterogeneous reaction mechanisms for liquid — organic solid or liquid — inorganic solid processes involved in large-scale manufacturing processes. Compton's work has had particular impact on optimising the processes used by Syngenta AG in its manufacturing of agrochemicals. Since 2008 the insights gained on inorganic-base dissolution have been of great benefit to Syngenta in its development of scalable robust manufacturing processes, particularly in relation to production of its fungicide Amistar and insecticide Actara, which are two of the world's largest selling products of this type. In 2012 Syngenta achieved total sales of over $ 14 billion, $ 4.8 billion of this from fungicide and insecticide revenues.
The impact presented in this case study is the commercialisation of 15 products with perfume microcapsules by Procter and Gamble (P&G), made possible using capsule mechanical strength data provided by Prof Zhibing Zhang's research group at Birmingham. Use of microcapsules gives improved freshness performance, and thus commercial advantage, compared with traditional formulations; they have been incorporated in P&G's four major billion-dollar brands — Downy, Febreze, Lenor and Tide. This has significantly improved their competitiveness enabling P&G to retain their leading position in the USA and Western Europe. A novel micromanipulation technique developed at the University of Birmingham has been used extensively to obtain mechanical properties data for the micro-particles, including microcapsules prepared in Birmingham and provided by companies, which is related to their formulation and processing conditions and end- use performance. In addition, the knowledge generated has helped 15 other companies to commercialise new functional products containing micro-particles.
Research into new process modelling tools and numerical simulation and optimisation algorithms at Imperial's Centre for Process Systems Engineering (CPSE) has resulted in a powerful new modelling technology. In 1997, a team from (CPSE) established a spin-out company, Process Systems Enterprise Ltd (PSE, www.psenterprise.com), to commercialise this process and energy systems modelling platform — gPROMSTM and to provide associated leading-edge model based services such as the design of new processes and the optimisation of existing processes.
Based on turnover (£400k at launch to £10m today), PSE is now recognised as a leading provider of process modelling technology and modelling platforms, with over 100 employees in high-end jobs. Its customers include most of the world's leading chemical, energy and automotive companies (e.g. Dow Chemical, BASF, BP, Shell, ExxonMobil, Toyota, Honda, Ford, Mitsubishi Chemicals) and it has a strong international presence with offices in the UK, US, Germany, Japan and Korea and agencies in China, India, Saudi Arabia and Thailand. The overall benefit to industry over the REF period is estimated to be £400m. The software allows customers to model, understand and optimise their processes in an unprecedented manner, leading to improved designs and more efficient operations. The gPROMSTM software is used in over 200 universities for both teaching and research (primarily the latter), where it enables research into new chemical and energy processes to take place.