Log in
In the last 20 years, reconfigurable technology has transformed High-Performance Computing and Embedded Systems Design. Research of the Custom Computing and Reconfigurable Systems groups at Imperial made pivotal contributions to this transformation, targeting particularly Field-Programmable Gate Array (FPGA) technology. Since 2008, the impact of this research has been to
Newcastle University's fundamental research into the automated synthesis of asynchronous systems and metastability analysis has resulted in new technologies that have been adopted worldwide by the microprocessor industry and educational sectors. In particular, Newcastle's asynchronous design methods and tools based on Petri nets have been used by the industry leading vendor Intel Corporation for their switch silicon technology, on which most transactions on the NYSE and NASDAQ (with combined daily volume of trade exceeding £80 billion) now rely. Oracle Corporation used the results of Newcastle's metastability analysis research for building their SPARC series of servers, marketed as having "world's fastest microprocessor".
Effective industrial design and simulation require efficient and versatile computing systems. As a result of research performed by our team experienced in High Performance Computing (HPC), novel software structures and aligned hardware architectures have led to significant benefits to the energy supply industry and to microprocessor manufacturers.
As a result of our research with supercomputing, simulation times for electric field patterns in power components have reduced more than 30-fold, with accurate complex 3-D outputs for an increased range of configurations, thereby enabling our partner company to achieve results not possible with commercial software and to reduce product development costs by $0.5M - $5M p.a.
Our research has been incorporated by Intel into their numerical libraries and now made available to the general public supported by their latest processor architectures. Intel now has a 82% share of processors, according to the November 2013 Top500 list.
Compiler research at Edinburgh over the last decade has had significant industrial and commercial impact. Early work on pointer conversion is now available in Intel's commercial compilers. Later ground-breaking work on machine-learning based compilation led to the release of MilePost GCC, an enhanced version of the world's widest-used open source compiler supported by IBM. More recent work on parallelism discovery and machine-learning mapping has led to a new ARM Centre of Excellence at Edinburgh.
Based on research within the Digital Media Technology group, innovative multi-media technologies for capturing, structuring, and analysing real-time crash test data were developed, between 1996 and 2006, leading to transformational impacts on the professional practices of the global vehicle crash testing industry. Initially realised through an award-winning technology transfer programme with MIRA, the systems have been widely deployed by leading crash test organisations, supported faster vehicle design iterations and contributed to the design of safer vehicles. The underpinning research has directly contributed to the ISO standard (ISO/DTR 13499) and its current version. The impact is ongoing and long lasting since most systems in current use are largely based on the original technologies.
Cloud computing is now used ubiquitously in consumer and commerce domains yielding unprecedented access to computing and data handling at affordable prices.
Work in this field was pioneered at the University of Southampton (UoS) from 1998 onwards and commercialised from 2008 through Dezineforce to enable companies to exploit cloud computing in engineering:
Throughout this period the team has also engaged in outreach to inspire and educate the next generation of scientists and engineers about High Performance and Cloud computing including a YouTube video with 485,000 hits and over 300 articles in media.
Newcastle University's fundamental research into the theory of concurrency and the automated construction and analysis of asynchronous systems has resulted in novel technologies that have been adopted and applied worldwide by industry. This case study describes impact over the last five years on the industrial development of asynchronous microprocessor chips, in particular, deployed by Intel for handling financial transactions on NYSE and NASDAQ (with combined daily volume of trade exceeding £80 billion), and the improvements in business process analysis through the world-leading open-source ProM tools (downloaded over 65,000 times since 2008, and used by a number of major organisations, e.g. ING Bank and Deloitte).
The invention of a novel component-based model and approach for rapid distributed software development are the core research results for this case study. Using our methodology we have built a fully functional platform — the Grid Integrated Development Environment (GIDE) — which has been used for the development of user applications by several industrial partners. The main economic impact of our work is the new component-based development process resulting in much higher productivity and shorter development cycle. In addition, the four new international standards approved by ETSI provide impact on the wider professional community in the areas of grid and cloud computing.
Impact: Economic gains PHYESTA designed 8% of the area of the computer chip for IBM's most recent BlueGene/Q supercomputer product. Global install base of design exceeds $500M.
Significance: Unique experiment in co-design at the cutting edge of technology. Adopted by both IBM and Fujitsu, who have led in Green500 energy efficiency and top500 supercomputer rankings.
Reach: This supercomputer architecture has been installed in labs in the UK, the US, the EU, and Japan and is accelerating computational science and advanced manufacturing around the globe. In the UK the BlueJoule system installed in the Hartree center at Daresbury is driving HPC uptake in the advanced manufacturing sector.
Beneficiaries: IBM, Fujitsu, computational science and the HPC community worldwide.
Attribution: This work was led by Dr Peter Boyle (School of Physics & Astronomy, University of Edinburgh) in collaboration with Columbia University and IBM.
Graph-theoretic and mathematically rigorous algorithmic methods developed at the University of Hertfordshire have improved the applicability of compiler technology and parallel processing. A compiler developed in the course of a ten-year research programme at the university has been successfully applied to a number of commercial problems by re-purposing the research tool. NAG Ltd has adapted the tool into a commercial product [text removed for publication]. Numerous applications of the mathematical methods (such as type-flow graphs used conjointly for correctness and optimisation) have been deployed by industry (including SAP, SCCH, German Waterways Board) working closely with the university.