Similar case studies

REF impact found 25 Case Studies

Currently displayed text from case study:

Economical and beneficial environmental impact on industrial production of ethyl acetate

Summary of the impact

Studies into the deactivation and regeneration of heteropoly acid catalysts, which took place in the group of Professor Ivan Kozhevnikov at Liverpool University since 1996, resulted in the large-scale industrial application of these catalysts in BP's process for the synthesis of the widely used solvent ethyl acetate, thus making significant economic and environmental impact. This process, trademarked AVADA (for AdVanced Acetates by Direct Addition of acetic acid to ethylene), was launched in 2001 at Hull, UK, on a scale of 220,000 tonnes p.a., then the world's largest ethyl acetate production plant. The impact continued through the REF period from 2008 to 2013. In October 2011, the AVADA process produced 56% of the ethyl acetate in Europe (245,000 tonnes p.a. production capacity and $340m p.a. factory gate value), being the second largest in the world after the Zhenjiang 270,000 tonnes p.a. ethyl acetate plant in China. Over the REF period, the AVADA process produced 1.2 million tonnes of ethyl acetate worth $1.7 billion. The AVADA process makes ethyl acetate with 100% atom efficiency, avoiding the use of ethanol as an intermediate. It beats conventional processes in environmental friendliness by reducing energy consumption by 20% and feedstock losses by 35%, thus removing more than 100,000 tonnes p.a. of wastewater stream. At the heart of the AVADA process is a highly efficient heteropoly acid catalyst that is responsible for its superior performance. Implementation of measures improving catalyst stability and resistance to coking, which originated from collaboration between the Kozhevnikov group and BP Chemicals, prevented otherwise fast catalyst deactivation to create an economically viable process.

Submitting Institution

University of Liverpool

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Industrially relevant olefin polymerisation catalysis at UEA

Summary of the impact

Research at UEA over a 20 year period in the area of olefin polymerisation catalysis has had significant economic impact through:

  • industrial uptake of new activator systems crucial for solution phase polymerisation processes
  • improvement in catalyst performance by the `trityl effect' which is now implemented in industrial processes
  • patents taken out and maintained by industry.

Submitting Institution

University of East Anglia

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Replacement of heavy metal catalysts in the plastics industry

Summary of the impact

Catalysis is a major UK industry strength and wealth generator for the UK economy. Research carried out in the group of Professor Matthew Davidson in the Department of Chemistry at the University of Bath resulted in the development of titanium and zirconium alkoxide catalysts for use in three industrial polymerisation processes and patented by the UK companies ICI Synetix and Johnson Matthey. Patents have recently also been acquired by the Indian multinational Dorf Ketal and filed by the Dutch multinational Corbion Purac. The research has resulted in the adoption of new catalysts in industry leading to increased turnover, onward dissemination and implementation of the Bath intellectual property. It has also generated £4.6M from sale of intellectual property and an increase in generated sales of new, sustainable titanium catalysts that replace heavy metals such as tin, antimony and mercury in major industrial processes. The intellectual property and process developments have been implemented globally in the poly(ethylene terephthalate) (PET) and poly(urethane) (PU) plastics markets, worth $23B and $33B, respectively, in 2010.

Submitting Institution

University of Bath

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

Wills Catalysts: commercialised systems for enantioselective production of pharmaceutical intermediates

Summary of the impact

A process for the commercial production of a family of Warwick-invented organometallic catalysts has been developed and patented by Johnson Matthey (JM). The catalysts — which have been sold internationally to several fine chemical and pharmaceutical companies in kilogram quantities, capable of producing tonnes of product — are in widespread industrial use for synthesis and scale-up. Other companies have protected, and are marketing, similar `copycat' catalysts. JM continues to work in collaboration with Warwick Chemistry on the next generation of catalysts.

Submitting Institution

University of Warwick

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

C1 - The Founding of Argenta Discovery and Pulmagen Therapeutics

Summary of the impact

The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

3 - The development of a commercial biofuel from waste process and the success of TMO Renewables Ltd

Summary of the impact

Working with TMO Renewables Ltd, work in Dr Leak's laboratory at Imperial College demonstrated that thermophilic bacteria of the genus Geobacillus could use a novel (i.e. non-textbook) route to produce ethanol. TMO used this information to develop strains that produced ethanol in commercially useful quantities from lignocellulose breakdown products. This allowed them to: (i) compete for and win a major contract ($500M over 20 years) with Fiberight in the USA in 2010, to turn fermentable components of municipal solid waste into biofuel, (ii) enter into partnership agreements with the China National Offshore Oil Corporation and the China National Cereals, Oils and Foodstuffs Corporation in 2011, and (iii) enter into agreements in 2012 and 2013 with Usina Santa Maria Cerquilho to build a bioethanol production facility in Brazil. The most recent agreement with Brazil will create more than 150 new jobs in the UK. At the end of 2011, TMO Renewables reported a net worth of almost £11million.

Submitting Institution

Imperial College London

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics

UOA08-01: Oxford Catalysts Group – a successful company built on the development and application of highly-active catalysts for the conversion of natural gas to liquid hydrocarbons

Summary of the impact

Research carried out by Malcolm Green's group in the UOA led to the spin-out of Oxford Catalysts Ltd. A large part of the company's technology is based on Green's transition-metal catalysis research, which has enabled them to develop a highly efficient Fischer-Tropsch (FT) catalyst to convert natural gas to liquid hydrocarbons. In 2010, Oxford Catalysts Group (now Velocys) demonstrated the world's first smaller-scale, modular gas-to-liquids and biomass-to-liquids FT plants which made use of the catalyst for the efficient conversion of low-value or waste gas to liquid hydrocarbon fuels. Since then, orders worth £ 8M have been taken and the company has been selected to provide FT technology for 4 commercial projects. From 2008 - 2012, the company raised over £ 60M, achieved revenue of £ 30M and now employs around 90 people.

Submitting Institution

University of Oxford

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

1. Enabling the cost-effective and environmentally friendly production of Perspex

Summary of the impact

Cardiff University, through developing and patenting a commercially viable synthetic route to a catalyst, has enabled the application of a new process, the Alpha Process, for the production of methyl methacrylate (MMA), a key commodity precursor to Perspex. The Alpha Process has had economic and environmental impacts.

Lucite International, the world's leading MMA producer, has invested in major Alpha Process production facilities in Singapore and Saudi Arabia, benefitting from a production route which is more efficient, more reliable and cheaper than conventional routes.

The Alpha Process also brings environmental benefits, as it does not rely on the use of corrosive and toxic feedstocks, such as hydrogen cyanide, which are associated with conventional MMA processes.

Submitting Institution

Cardiff University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

C2 - The BioLEDTM microanalysis technology: Molecular Vision Ltd

Summary of the impact

Molecular Vision Ltd ("MV"), which was spun-out of Imperial Innovations, develops simple-to-use, point-of-care diagnostic devices (known as the BioLED™ platform) that quickly produce lab-quality information from a single sample of bodily fluids. Since 2008 MV has validated the platform, including demonstration of its CardioplexTM triple test for myoglobin, CK-MB and troponin-I in a serum sample, and undertaken >£1.5M of contract work for a variety of customers including Acrongenomics Inc, Microfluidic ChipShop and L'Oreal; addressing analysis problems relating to kidney and cardiac health, pathogen identification and cosmetics. During the REF period the Company has generated a total of over £3.4m in investment, contract revenue and non-UK grant funding and created greater than 50 man years of UK employment, primarily at the PhD level. Abingdon Health Group acquired a majority stake in MV in 2012 as part of its strategy to create a fully integrated business in the UK that is able to compete in the large and global immunodiagnostics market.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Interdisciplinary Engineering

C4 - Bio Nano Consulting: a successful bio and nanotechnology consultancy business

Summary of the impact

Bio Nano Consulting (http://www.bio-nano-consulting.com) was established as an operating business in 2007 through a joint venture between Imperial College London and UCL, whose formation was underpinned by research produced by Professor Tony Cass's group at Imperial. The company is the first consultancy in Europe to focus on the increasingly important intersection between bio- and nanotechnology, and it facilitates the development and commercialisation of new biomedical and nanotechnology-based techniques. Since its start-up, the company has attracted numerous clients across the aerospace and diagnostics sectors, including Lockheed-Martin and [text removed for publication]. The company's activities have generated £6M worth of revenue and it has a growing portfolio. The company, which is based in London, currently has 8 full time employees.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Inorganic Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies