Similar case studies

REF impact found 18 Case Studies

Currently displayed text from case study:

Bomb detection

Summary of the impact

Research at the University of Cambridge, Department of Physics on sensitive techniques for measurements of magnetic and electrical properties of materials led to the selection of Dr Michael Sutherland as an expert witness in a series of major police investigations involving fraudulent bomb detecting equipment. Scientific evidence Dr Sutherland presented in court was key in securing guilty verdicts, leading to the breakup in 2013 of several international fraud rings with combined revenue in excess of £70 million. This criminal activity had caused significant damage to the reputation of the UK in Iraq and elsewhere.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry

CPO software package for designing charged-particle optical systems

Summary of the impact

A software package called CPO has been developed that simulates the motion of charged particles in electromagnetic fields. More than 200 benchmark tests have established CPO as the gold standard in low-energy charged-particle optics. A spin-off company was formed to market CPO, [text removed for publication]

Submitting Institution

University of Manchester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Advanced Materials Modelling for Earth and Space Application

Summary of the impact

Research in materials modelling by the Computational Science and Engineering Group (CSEG) is helping aerospace, defence and transport companies design advanced materials and new manufacturing processes. From lightweight components like aeroengine turbine blades to the control of magnetic fields to stabilise the next generation of International Space Station levitation experiments, CSEG is supporting innovations which have:

  • economic impact due to increase in competitiveness, market share, energy cost reduction and better use of raw materials;
  • environmental impact due to new lightweight recyclable materials and reduced energy processes;
  • increased public awareness of the importance of advanced materials and influenced government policy.

In the assessment period, CSEG collaborated closely with leading industries in steel-making (ArcelorMittal, Corus), primary aluminium (Dubal, Rusal, Norsk-Hydro, SAMI) and lightweight structural materials for transport and aerospace (European Space Agency, Rolls-Royce).

Submitting Institution

University of Greenwich

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Public understanding: Nature's Raincoats

Summary of the impact

Nature's Raincoats is a physical exhibition and a website providing easily accessible information and resources. These entities have had extensive use within the public understanding of superhydrophobic surfaces (extremely repellent to water), including The Royal Society Summer Science Exhibition, Cheltenham Science Festival, The Big Bang Fair, British Science Festival and Techfest (India) — reaching thousands of people in the UK and overseas. As well as impacting on improved public awareness, the research informed website provides a direct route to research expertise for companies within the UK and internationally and extends good practice of working with industry e.g. Rolls Royce.

Submitting Institution

Nottingham Trent University

Unit of Assessment

General Engineering

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Biomedical Engineering

Solid Oxide Fuel Cells for High Efficiency Domestic Combined Heat and Power

Summary of the impact

Patents arising from EPSRC funded research by Kilner (PI) and Steele, Atkinson and Brandon (CoI's) resulted in the development of a unique metal-supported solid oxide fuel cell and formation of the spin out company Ceres Power in 2001. Ongoing development at Ceres Power has been supported by further underpinning research by the Fuel Cell group in the Department of Materials at Imperial and has produced a world-leading SOFC fuel cell module which provides the core component for a variety of applications and fuels, including: micro combined heat and power (mCHP); mobile auxiliary power units (APU); and remote power. Ceres Power has developed a mCHP unit containing the core module for residential applications powered by natural gas in collaboration with British Gas and Bord Gais (Ireland). The unit has an electrical efficiency of 45% and total efficiency of 90%. It reduces the energy bill by 25%, and saves around 1.5 tonnes of CO2 per annum per household. The company is AIM listed and in 2011 had 160 employees, with a technology centre in Crawley and a manufacturing plant in Horsham. Over the period of the review the company has directly provided approximately 600 man years of employment in the UK.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Other Chemical Sciences
Engineering: Materials Engineering

Regulatory Framework for Electromagnetic Field Exposure Limits for Magnetic Resonance Imaging

Summary of the impact

Our research on the physiological effects of the electromagnetic fields generated in magnetic resonance imaging (MRI) has been used by: (i) the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the UK Health Protection Agency (HPA) in establishing advisory limits and action values in their published regulatory guidelines; (ii) the EU Commission as part of the evidential basis in their decision to derogate MRI from the scope of the Physical Agents Directive 2004/40/EC. These decisions have enabled the continued operation of MR scanners across Europe, safeguarding the access to MRI for 500 million people. The economic benefits arising from the manufacture of MRI equipment were also secured. Our work has thus resulted in impact on public policy, the economy and healthcare.

Submitting Institution

University of Nottingham

Unit of Assessment

Physics

Summary Impact Type

Political

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Medical and Health Sciences: Clinical Sciences, Neurosciences

C8 - A theoretical prediction leading to a redesigned read head used in all hard-disk drives (HDDs) manufactured today

Summary of the impact

We demonstrate a strong influence on the design of the read head used in the present state-of-the-art hard-disk drive (HDD) first produced commercially in 2008. This much improved read head, enabling disk storage density to increase by a factor of 5 to around 1 Tbit/in2, relies crucially on a magnetic tunnel junction with a MgO barrier whose huge tunneling magnetoresistance was predicted theoretically in a 2001 paper co-authored by Dr A. Umerski [1], the RA on one of our EPSRC-funded research grants. This prediction relied on techniques developed by us over many years, specifically in refs [2] and [3]. Such magnetic tunnel junctions are used in all computer HDDs manufactured today with predicted sales in 2012 amounting to more than $28 billion [section 5, source A].

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Inorganic Chemistry

5. XMaS: development of innovative X-ray instrumentation for synchrotron radiation facilities

Summary of the impact

XMaS is a dedicated materials science beamline at the European Synchrotron Radiation Facility (ESRF). It develops and disseminates novel instrumentation and sample environments that allow new experiments which support emerging technologies. By commercialising the intellectual property through licenses to companies economic impact is derived directly. Further economic impact is facilitated through knowledge transfer by trained people and expertise in new processes, which enhances the capability, capacity and efficiency of other central facilities. Public interest and awareness are engendered through individual research projects being highlighted in the media and through people's skills and experience being utilised in a broad range of sectors.

Submitting Institution

University of Warwick

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

International commercial impact from the creation of the spin-out company Magnomatics Ltd.

Summary of the impact

Research in the Department of Electronic & Electrical Engineering at the University of Sheffield has generated economic impact through the creation of a spinout company, Magnomatics Ltd, commercialising high performance electric drives, in particular those employing magnetic gearing technologies. Magnomatics employs 35 full-time staff, had a turnover of £1.4M for the year 2012, and its technologies are now being developed for applications in utility scale wind turbines, hybrid vehicles and marine propulsion.

Submitting Institution

University of Sheffield

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Economic

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering, Electrical and Electronic Engineering

P8 - Space science magnetometer adapted for commercial use as a satellite attitude sensor

Summary of the impact

The Space & Atmospheric Physics (SPAT) group's magnetometer laboratory at Imperial has developed a small and lightweight magnetic field instrument intended to be flown on future generations of extremely small satellites or planetary landers. The instrument will be used for planetary research or plasma physics in the space environment, and also has application for attitude determination on satellites in Earth-orbit, by comparison with the geomagnetic field (`digital compass'). In 2010 Imperial Innovations granted Satellite Services Ltd (now the SSBV Aerospace and Technology Group) an exclusive 3-year license to market the design for the commercial satellite sector. Satellite Services have sold seven units (circa. € 10,000 per unit) with further commercial sales anticipated in the coming years. Sales of the device have contributed significantly to SSBV's company turnover, indicating the economic impact of the SPAT group's research.

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies