Similar case studies

REF impact found 11 Case Studies

Currently displayed text from case study:

8. Full-waveform seismic inversion: improving resolution in oil & gas exploration

Summary of the impact

Full-waveform inversion (FWI) is a seismic technique for exploring the interior of the Earth; it has been developed at Imperial College over two decades, from a promising concept into a fully commercialised industrial process that has been widely adopted across the petroleum industry. The technique improves both the spatial resolution and the fidelity with which the sub-surface can be imaged in three dimensions. All the major multinational petroleum companies now use FWI internally, and all the major oil-field service companies offer the technology to the wider industry. Since its first commercial uptake in 2008, its application has influenced at least one hundred drilling decisions worldwide, and as a consequence it has generated additional value of at least $500M within the petroleum industry.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Numerical and Computational Mathematics
Earth Sciences: Geophysics
Information and Computing Sciences: Computation Theory and Mathematics

3. Engineering applications of ultrasonics research

Summary of the impact

The techniques developed by the Warwick Ultrasonics Group focus on non-destructive testing (NDT) and address particular industrial needs as specified by industrial funders. These partners have included over 40 companies in the REF Impact period, ranging from SMEs to large multi- nationals operating in a range of sectors such as the heavy manufacturing, nuclear energy, food, petrochemical, transport, aerospace, power generation, equipment manufacturing and service industries. In particular, our spin-out company, Sonemat, has commercialised high-performance electromagnetic acoustic transducers (EMATs) developed by the research group, which has led to economic benefits for NDT equipment suppliers and their end users. Further industrial impact has arisen from novel NDT methodologies established by the Group.

Submitting Institution

University of Warwick

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Resources Engineering and Extractive Metallurgy

Fracture modelling saves money, increases productivity and makes mining safer

Summary of the impact

From 1995 Professor Munjiza's research at QMUL has led to the development of a series of algorithms which can predict the movement and relationship between objects. These algorithms have been commercialised by a range of international engineering and software companies including Orica, the world's leading blasting systems provider (via their MBM software package), and the software modelling company, Dassault Systems (via their Abaqus software). Through these commercialisation routes Munjiza's work has generated significant economic impact which is global in nature. For example, his predictive algorithms have enabled safer, more productive blast mining for Orica's clients — in one mine alone, software based on Munjiza's modelling approach has meant a 10% increase in productivity, a 7% reduction in costs and an annual saving of $2.8 million. It has also been used in Dassault Systems' Abaqus modelling software, which is the world's leading generic simulation software used to solve a wide variety of industrial problems across the defence, automobile, construction, aerospace and chemicals sectors with associated economic impact.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Engineering: Resources Engineering and Extractive Metallurgy

C10 - Forecasting Ocean Oil Spill movements, facilitating Oil Spill clean-ups

Summary of the impact

In the 1990s Dr D Moore, who has extensive experience in fluid dynamics, worked with collaborators at the US Naval Research Laboratory (NRL) on parallelising an ocean modelling code. This resulted in the Navy Layered Ocean Model (NLOM) and later the Hybrid Coordinate Ocean Model (HYCOM). NLOM and HYCOM, which were/are distributed through the NRL and HYCOM consortium, are open access ocean modelling codes that are used to forecast ocean currents. They have proved particularly impactful for the forecasting of ocean oil spills and the corresponding management of the environmental risk. NLOM and/or HYCOM have been used extensively in the Deepwater Horizon oil spill in 2010 as well as the Montara Well Release oil spill in Australia in 2009, providing valuable forecasts to assist with the response to the disasters.

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Technology: Computer Hardware

18. Improving survivability of protective structures through novel design and modelling

Summary of the impact

The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

C6 - Wavelet analysis techniques developed into multiple software packages and widely used internationally including in the biomedical, conservation and financial sectors

Summary of the impact

Methodological, algorithmic and interpretational advances in wavelet techniques for time series analysis are encapsulated in the research monograph by Percival and Walden (2000): "Wavelet Methods for Time Series Analysis" (WMTSA). Multiple language software packages have been developed from the book's contents, including the Spotfire S+ package from the major commercial software company TIBCO (2008-present). TIBCO Spotfire clients span many sectors and include major companies such as GE, Chevron, GlaxoSmithKline and Cisco. Further applications of the wavelet techniques developed in WMTSA include in the biomedical, conservation and financial sectors. WMTSA is used, for example, in functional Magnetic Resonance Imaging by GlaxoSmithKline, to monitor cracks in the dome of the UNESCO world heritage site Santa Maria del Fiore Cathedral in Florence, and by the Reserve Bank of New Zealand in its analysis of measuring core inflation.

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Econometrics

1: New design methods from piling research that improve the foundation safety and economy of offshore structures

Summary of the impact

The Imperial College Pile `ICP' effective-stress pile design approaches for offshore foundations offer much better design reliability than conventional methods. Their use delivers substantial economies in many hydrocarbon and renewable energy projects, better safety and confidence in developing adventurous structures in others. The ICP has enabled production in otherwise unviable marginal hydrocarbon fields, new options in high-value deep-water projects and helped eliminate installation failures that can cost hundreds of £million. We present evidence that the research delivered direct benefits exceeding £400m since 2008 in projects known to us, with larger worldwide benefits through project risk reduction and independent exploitation.

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy

Techniques for Improved Electromagnetic Design in the Aerospace Industry

Summary of the impact

Research at Swansea University in the area of computational electromagnetics has led to better design of aircraft with respect to radar detection and the screening of internal systems from the effect of unwanted electromagnetic field ingress. A key issue was the development of an ability to accommodate electromagnetically large complex bodies having spatially small, but electromagnetically important, features. In addition, procedures for modelling RF threats, including lightning strikes and electromagnetic hazards, were also developed. Such progress has enabled significant improvement in electromagnetic performance of technology produced by BAE Systems reaching across its Advanced Technology Centre and its business units (Military Aircraft and Information, and Naval Ships). This research enabled two-orders-of-magnitude improvement in efficiency of BAE software compared to previously used techniques, significantly reducing design time. These developments were used on major international programmes such as TYPHOON, the Taranis UCAV (unmanned Combat Air Vehicle).

Submitting Institution

Swansea University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

13. Increased safety and efficiency of oil and gas process designs from improved flow assurance

Summary of the impact

Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

5. Successful Commercialisation of Advances in Computational Fluid Dynamics

Summary of the impact

Computational Dynamics Ltd, partnering with adapco and trading as CD-adapco www.cd-adapco.com is the world's largest independent CFD-focused provider of engineering simulation software, with major products STAR-CD and STAR-CCM+. It was formed by Professor David Gosman and Dr Raad Issa and its turnover has grown more than 30 fold since 1993 and by over 250% since 2008 to currently ~ $190M pa. It employs around 750 staff, of whom roughly 80 are located in the London office. The company won a Queen's Award for Exports in 1997. Key technologies that underpin this growth were developed since 1993 in the Mechanical Engineering department at Imperial College. CD-adapco has over 7000 users of its software, working at 3000 different companies. It makes a major contribution in maintaining the competiveness of UK industry via improved understanding and design and lower costs through the reduced need to undertake expensive experimental studies.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies