Similar case studies

REF impact found 26 Case Studies

Currently displayed text from case study:

Development of the spin-out company PolyTherics, a major provider of conjugate therapy and protein modification technology to the pharmaceutical and biotechnology industries

Summary of the impact

Protein modification represents a highly significant and growing source of new products for the biopharmaceuticals market. This case study outlines the development of PolyTherics, a highly successful spin-out company from the UCL School of Pharmacy, and the impact that their enabling technology has had on the pharmaceutical and biotechnology industries. The company was developed as a direct result of new conjugate technology developed by Professor Steve Brocchini and coworkers at the School. The company moved to independent premises in 2006 and now manages a portfolio of over 100 granted and pending patents. Several licensing agreements are in place, including with Celtic Pharma Holdings for haemophilia treatments and Nuron for a multiple sclerosis treatment based on PEGylation conjugation technology. Revenue is expected to be £8m in 2013. The impact of Polytherics is therefore as a significant and effective technology provider to the pharmaceutical and biotechnology industries.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Medical Biochemistry and Metabolomics, Pharmacology and Pharmaceutical Sciences

Albachem: Commercialisation of the chemical synthesis of biologically active human proteins

Summary of the impact

Impact: EaStCHEM spin out Albachem (1994), subsequently incorporated into the Almac group, enabling the latter company to become a world leader in the provision of chemically synthesised proteins.

Significance: Chemical synthesis is competitive with recombinant methods for commercial production of the therapeutic polypeptides that represent ~50% of drugs in big pharma pipelines and have a market value in 2008 of over $13B. The value attributable to Ramage's methods for polypeptide syntheses over the REF period is estimated at approximately £6M.

Beneficiaries: Drug manufacturers, contract research organisations, patients, clinicians.

Research: Studies (1993-6) led by Ramage (at the University of Edinburgh) on new methods for high-yield total syntheses and purification of long polypeptides.

Reach: Almac's protein-manufacturing team remains in the UK with 24 staff members. The Almac Group, headquartered in N. Ireland, has 3300 employees globally (1300 outside UK) and sells to 600 companies worldwide.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology, Microbiology

Developing unique conjugation (PEGylation) technology and commercial spinout through PolyTherics Ltd.

Summary of the impact

A novel conjugation technology has been developed to enable site-specific attachment of polyethylene glycol (PEG) to proteins to extend the in vivo half-life of biopharmaceuticals. The technology has been commercialised by an Imperial College spin-out company, PolyTherics Limited. In 2013, the merger of PolyTherics with Antitope Limited, enhanced the company's biopharmaceutical technology development offering. PolyTherics issued new shares to the value of £13.5 million to investors and Antitope shareholders in connection with the merger.

The company has enabled the development of novel forms of interferon 03b2 (for the treatment of multiple sclerosis) and blood factors VIIA, VIII and IX (for the treatment of haemophilia A and B) utilising original Imperial TheraPEG™ technology. This is achieved through licences granted by PolyTherics to Nuron Biotech and Celtic Pharma Holdings who are in early pre-clinical development. PolyTherics has further developed the conjugation technology (ThioBridge™) for its application in the creation of stable, homogeneous antibody-drug conjugates for the targeted cancer therapy.

Polytherics has impacted the UK economy generating intellectual capital, capital investment, new employment and novel compounds to treat disease.

Submitting Institution

Imperial College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Medical Biochemistry and Metabolomics

Supercritical Fluids – Critical Pharmaceuticals Ltd (CS1)

Summary of the impact

The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Engineering: Biomedical Engineering

A unique computer technology for the accelerated discovery of drugs that “shape-shift” proteins refocuses and expands a U.S. Drug Discovery company

Summary of the impact

A computer technology has been invented to accelerate drug discovery. It predicts locations in disease-associated biomolecules where drug molecules could bind, induce shape changes, and thereby bring the activity of the biomolecule under control. A U.S. drug discovery company, Serometrix, has exclusively licensed this technology and incorporated it within their core discovery process. The impact upon them has been:

  • A step change in their technical approach towards small molecule drug discovery,
  • Attraction of $227k venture capital funding for the new company direction,
  • Expansion of workforce (four new personnel by end of 2013),
  • "Shaving years off" their discovery development programme,
  • Promising new drug leads,
  • Planned reduction of early trial compounds "from millions to hundreds".

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Micro-porous polyethylene: A novel affinity chromatography matrix for the bio-processing industry

Summary of the impact

Essex research identified a novel bioprocessing matrix which has since been developed into commercial products and recently launched into external markets by Porvair Filtration Group Ltd. The discovery involved the chemical modification of sintered thermoplastic materials in order to attach biological molecules, so conferring highly specific functionalised properties to an otherwise inert base material. This enabled a new approach for protein immobilisation, having technical and practical advantages over existing processes. As a direct result, Porvair has adopted a new technology and invested £900k in R&D over eight years. Essex research has supported a change in business strategy, enabling entry into new markets, which has in turn both safeguarded and created jobs at Porvair.

Submitting Institution

University of Essex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Biological Sciences: Biochemistry and Cell Biology

Combinatorial protein domain hunting to facilitate drug discovery

Summary of the impact

Combinatorial Domain Hunting (CDH) technology is a technique for producing fragments of proteins that are soluble and tractable for biophysical analysis. It was developed between 1999 and 2008 at Birkbeck College, in the laboratory of Dr Renos Savva. This technology was patented in 2001 and the biotech company Domainex Ltd was then formed to commercialise it. In 2007, Domainex merged with a UCL spinout company, NCE Discovery Ltd. The company has attracted over £3m in investment and employs about 31 people. In addition to its contract research programme, it has developed an in-house drug discovery programme utilising CDH. Early in 2012 a patent was filed on a series of inhibitors of the protein kinases IKK03b5 and TBK1, which are validated drug targets for cancer and inflammation, and the first of these are expected to begin clinical trials in 2014.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Intelligent Fingerprinting Ltd. – a spin out company from the School of Chemistry

Summary of the impact

The spin-out company Intelligent Fingerprinting Ltd. was founded in 2007, based on Professor David Russell's research. The company develops novel technologies using antibody-nanoparticle reagents to detect drugs and drug metabolites in latent fingerprints whilst simultaneously providing high resolution fingerprint images for identification purposes. Combining these technologies with a fluorescence-based hand-held reader provides a non-invasive diagnostic platform for use in the criminal justice sector, institutional testing and hospital environments.

Total funding to date for the company has been >£3.2M in four investment rounds. The company employs 11 staff, who work in dedicated office and laboratory premises within the Norwich Research Park Innovation Centre.

The company received its first purchase order from the UK Home Office in 2012. A distribution agreement is in place with Dallas-based SmarTox Inc. for North American sales of Intelligent Fingerprinting products for `Drugs of Abuse' testing.

Submitting Institution

University of East Anglia

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Organic Chemistry
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Economic benefit and competitive advantage from commercial adoption of an innovative non-invasive delivery method for drugs and vaccines

Summary of the impact

Research into non-ionic surfactant vesicles (NIV) led to the development of an innovative platform system for delivery of vaccines and drugs, either through oral administration or inhalation. The technology was licensed to a US company, VBI Vaccines in 2008 and led to product development in that company. The adoption of the technology supported the creation of 35 FTE jobs in US/Canada and attracted 50% of the licensor company's Series A VC investment (approximately $18M). It was also adopted by Morvus Technology Ltd. (2010). The University collaborated with Biovaxpahrma Ltd to create a new biotechnology spin out Inhalosome-C, which was awarded a £196k TSB grant in December 2012. The technology is currently being used in commercial R&D in two further companies, Aptuit Ltd and Philips Respiratory Drug Delivery.

Submitting Institution

University of Strathclyde

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Technology: Medical Biotechnology
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Novel low fat food products leading to improved health and new market share using soft solid microstructures

Summary of the impact

The impact presented is the use of research carried out in the School of Chemical Engineering by a range of multinational food industries (inc. Unilever, Cargill, PepsiCo) to engineer a series of fat-reduced foods such as low fat spreads (LFS), dressings, margarine, sauces and mayonnaise. This has allowed them to build up a portfolio of novel low fat products; this portfolio would be much reduced or in some cases non-existent without the research contribution and capability generated by the Birmingham group as stated by Peter Lillford5.1 (former Chief Scientist, Unilever) and John Casey, (Vice President Biological Sciences, Unilever)5.2. These products are a significant and growing market segment e.g. LFS now outsell margarine/butter in a number of countries and are estimated to be worth globally 10 Billion Euros per year between 2008-13. Thus these products are having a significant impact on the industries' profitability. In addition, consumption of low fat foods act to tackle obesity with knock on effects for government (health service, lost GDP etc.) and the community as a whole.

Submitting Institution

University of Birmingham

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies