Log in
Research at the University of Manchester on laser cleaning of Ti alloys has resulted in practical implementation of the technology at Rolls-Royce for the automatic preparation of surfaces prior to electron beam welding. This has been applied to 24 different aero-engine component types including compressor drums across most current engine families. This has resulted in close to 100% `first time right' aero-engine component welds. The technology is also being adopted by BAE Systems to replace chemical cleaning during airframe manufacture. The elimination of manual and chemical cleaning processes results in savings of several million pounds per annum.
Commercialisation of high optical quality diamond by Element Six Ltd (2010 on) and of diamond- enabled lasers by M Squared Lasers Ltd (2012 on) has been made possible by underpinning research on laser engineering and optical characterisation at the University of Strathclyde. [text removed for publication] Markets for this material include thermal management of lasers to enable higher powers and high-performance laser output windows. [text removed for publication]
Impact: Economic gains / altered business practices.
Research on ultrafast lasers has led to the development of new products and services and has been pivotal in the development of a whole field of new technology.
Significance: The research underpins the product development of a range of world leading companies including Femtolasers, Newport Spectra-Physics and Menlo Systems.
Reach: The companies that use the technology represent all of the leading players in the solid-state femtosecond laser field, a marketplace worth more than $250M annually.
Beneficiaries: The impact presents economic gains to the companies involved and underlies many applications in e.g. biology and medicine, providing significant benefits to the public at large.
Attribution: The research was performed by Professor Sibbett's group.
This is an example of early economic impact where research on various aspects of laser engineering has resulted in the development of inexpensive, compact, efficient and user-friendly laser sources. An example is the incorporation of quantum dot structures into semiconductor laser architectures, with these replacing much larger and more expensive systems, with a range of applications in areas such as microscopy, biomedical diagnosis and therapy. This work has led to the generation of key know-how and patents that have been subsequently licensed as well as resulting in a variety of laser-related products being brought to market. Additionally, it has resulted in extra staff being employed at one of our partner companies.
Research in the laser photonics area has led to the formation and continuing development of two spin-out companies, Lynton Lasers Ltd and Laser Quantum Ltd, with annual turnover of £5.3m and >£12m respectively, and direct economic impact of [text removed for publication] over the REF period. Laser Quantum Ltd manufacture and market OEM diode pumped solid state lasers and Ti:sapphire lasers, which are incorporated in the products of major international companies in the scientific and entertainment sectors. Lynton Lasers Ltd manufacture and market medical devices for the cosmetic and aesthetic surgery market. Their products and services have underpinned the business of [text removed for publication] over the REF period. With an average cost of between [text removed for publication] over the REF period.
Pound-Drever-Hall (PDH) locking, developed into a practical technique by researchers at the University of Glasgow, is the ubiquitous method for the precise frequency control of stable laser systems. This control is central to laser products from companies such as Toptica and Newport, and has an estimated global annual market in excess of £5M. The PDH stabilisation technique is essential for the operation of the time standards maintained in all of the world's Governmental Metrological Standards Laboratories (e.g. NPL, NIST, BIPM) and finds applications in inspection tools in the semiconductor industry and deep UV lasers for UV-Raman spectroscopy.
Midaz Lasers Ltd is a spin-out laser company formed by academic founders, Professor Michael Damzen (Director and Chief Technology Officer, CTO) and Dr Ara Minassian (Chief Scientific Officer, CSO), in 2006 as the vehicle for commercial exploitation of patented laser technology [4] arising from Prof Damzen's research group in the Physics Department at Imperial College London.
Midaz has designed and assembled multiple engineered laser and amplifier products, incorporating this patented technology, and has sold units to industrial customers in Europe, N. America and Asia since 2010. The primary market and beneficiary for Midaz laser technology is the industrial laser manufacturing sector and the benefit of the technology is to create laser industrial tools for higher throughput and lower cost manufacturing, including in the semiconductor industry for production of consumer electronics. In July 2012, Midaz was successfully sold to world-leading laser company, Coherent Lasers Ltd, for $3.8 Million.
Laser cleaning is now a standard technique of great value in the conservation process to which research conducted at Loughborough University made a significant contribution. This work played a major part in introducing laser cleaning to conservators across Europe and further afield and was instrumental to the preservation and restoration of world heritage sites such as the Acropolis at Athens and important works of art including pieces by Henry Moore and Jacob Epstein. In addition to the cultural impact, the availability of laser cleaning techniques has: improved public services and understanding of, and engagement with, the conservation process (live restoration of artefacts); improved health (of restoration workers); influenced conservation practitioners (through an enhanced skill-set).
Imperial researchers in Prof Paul French's photonics group demonstrated one of the first practical FLIM instruments in 1997 using a prototype gated optical intensifier (GOI) developed by Kentech Instruments Ltd and a home-built solid-state ultrafast laser. They subsequently pioneered the use of ultrafast supercontinuum sources (USS) for FLIM. Today wide-field time-gated FLIM is a commercial success and is being widely applied for biomedicine, including for imaging of diseased tissue [e.g. 5] and for FRET (Fluorescence resonance energy transfer) microscopy to assay protein interactions [e.g. 3, 4]. This research thus helped translate FLIM to a wider community, highlighting the potential for tissue imaging, cell biology and drug discovery. It stimulated about £5M of GOI sales for Kentech [section 5, source A], with whom they developed time-gated FLIM technology and applications, and millions of pounds worth of sales of supercontinuum sources for Fianium Ltd [B].
The development by Tallents et al of a new plasma opacity measurement technique contributed to the decision by the UK Ministry of Defence (MoD) to construct the £150 million Orion laser at the Atomic Weapons Laboratory (AWE) for the measurement of material properties at high energy density. Orion will enable AWE to measure e.g. opacities important in nuclear weapons design without underground tests and at much lower cost than would have been the case if it had followed the French and US programmes with lasers costing over £1 billion.