Similar case studies

REF impact found 25 Case Studies

Currently displayed text from case study:

Industrially relevant olefin polymerisation catalysis at UEA

Summary of the impact

Research at UEA over a 20 year period in the area of olefin polymerisation catalysis has had significant economic impact through:

  • industrial uptake of new activator systems crucial for solution phase polymerisation processes
  • improvement in catalyst performance by the `trityl effect' which is now implemented in industrial processes
  • patents taken out and maintained by industry.

Submitting Institution

University of East Anglia

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Economical and beneficial environmental impact on industrial production of ethyl acetate

Summary of the impact

Studies into the deactivation and regeneration of heteropoly acid catalysts, which took place in the group of Professor Ivan Kozhevnikov at Liverpool University since 1996, resulted in the large-scale industrial application of these catalysts in BP's process for the synthesis of the widely used solvent ethyl acetate, thus making significant economic and environmental impact. This process, trademarked AVADA (for AdVanced Acetates by Direct Addition of acetic acid to ethylene), was launched in 2001 at Hull, UK, on a scale of 220,000 tonnes p.a., then the world's largest ethyl acetate production plant. The impact continued through the REF period from 2008 to 2013. In October 2011, the AVADA process produced 56% of the ethyl acetate in Europe (245,000 tonnes p.a. production capacity and $340m p.a. factory gate value), being the second largest in the world after the Zhenjiang 270,000 tonnes p.a. ethyl acetate plant in China. Over the REF period, the AVADA process produced 1.2 million tonnes of ethyl acetate worth $1.7 billion. The AVADA process makes ethyl acetate with 100% atom efficiency, avoiding the use of ethanol as an intermediate. It beats conventional processes in environmental friendliness by reducing energy consumption by 20% and feedstock losses by 35%, thus removing more than 100,000 tonnes p.a. of wastewater stream. At the heart of the AVADA process is a highly efficient heteropoly acid catalyst that is responsible for its superior performance. Implementation of measures improving catalyst stability and resistance to coking, which originated from collaboration between the Kozhevnikov group and BP Chemicals, prevented otherwise fast catalyst deactivation to create an economically viable process.

Submitting Institution

University of Liverpool

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

C3 - Plaxica: Transformational Biopolymer Technology

Summary of the impact

Plaxica is a spin-out from, and based, at Imperial College London with economic, societal and environmental impacts. Launched in 2008, Plaxica is a process technology licensing business which is tackling the barriers that currently prevent a wider acceptance of bioplastics; specifically improving properties, decreasing cost and using non-food feedstocks to manufacture the biopolymer poly(lactic acid), PLA. Plaxica's technology uses sustainable feedstocks to produce PLA using more energy-efficient processes, to produce a strong, high-quality polymer, the result of which is a low-cost, environmentally-friendly biopolymer for use in applications including textiles, packaging, and automobile parts. In the REF period Plaxica has raised £10m from investors such as Imperial Innovations, Invesco Perpetual and NESTA Investments. The market pull for biorenewable materials from consumers is strong and the EU predicts that PLA will substitute >10% of the existing market for petrochemical polymers and forecasts a market >$15b [A].

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry, Other Chemical Sciences

Wills Catalysts: commercialised systems for enantioselective production of pharmaceutical intermediates

Summary of the impact

A process for the commercial production of a family of Warwick-invented organometallic catalysts has been developed and patented by Johnson Matthey (JM). The catalysts — which have been sold internationally to several fine chemical and pharmaceutical companies in kilogram quantities, capable of producing tonnes of product — are in widespread industrial use for synthesis and scale-up. Other companies have protected, and are marketing, similar `copycat' catalysts. JM continues to work in collaboration with Warwick Chemistry on the next generation of catalysts.

Submitting Institution

University of Warwick

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

C1 - The Founding of Argenta Discovery and Pulmagen Therapeutics

Summary of the impact

The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

1. Enabling the cost-effective and environmentally friendly production of Perspex

Summary of the impact

Cardiff University, through developing and patenting a commercially viable synthetic route to a catalyst, has enabled the application of a new process, the Alpha Process, for the production of methyl methacrylate (MMA), a key commodity precursor to Perspex. The Alpha Process has had economic and environmental impacts.

Lucite International, the world's leading MMA producer, has invested in major Alpha Process production facilities in Singapore and Saudi Arabia, benefitting from a production route which is more efficient, more reliable and cheaper than conventional routes.

The Alpha Process also brings environmental benefits, as it does not rely on the use of corrosive and toxic feedstocks, such as hydrogen cyanide, which are associated with conventional MMA processes.

Submitting Institution

Cardiff University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

UOA08-01: Oxford Catalysts Group – a successful company built on the development and application of highly-active catalysts for the conversion of natural gas to liquid hydrocarbons

Summary of the impact

Research carried out by Malcolm Green's group in the UOA led to the spin-out of Oxford Catalysts Ltd. A large part of the company's technology is based on Green's transition-metal catalysis research, which has enabled them to develop a highly efficient Fischer-Tropsch (FT) catalyst to convert natural gas to liquid hydrocarbons. In 2010, Oxford Catalysts Group (now Velocys) demonstrated the world's first smaller-scale, modular gas-to-liquids and biomass-to-liquids FT plants which made use of the catalyst for the efficient conversion of low-value or waste gas to liquid hydrocarbon fuels. Since then, orders worth £ 8M have been taken and the company has been selected to provide FT technology for 4 commercial projects. From 2008 - 2012, the company raised over £ 60M, achieved revenue of £ 30M and now employs around 90 people.

Submitting Institution

University of Oxford

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

The Impact of Physical Organic Chemistry Research at Huddersfield

Summary of the impact

University of Huddersfield research in physical organic chemistry has delivered economic, industrial and societal benefits. It has led to process improvements in chemical manufacturing, most notably in the optimisation of the synthesis of antisense oligonucleotides and in the use of liquid ammonia as a solvent. It has also led to the development of new inhibitors of bacterial β-lactamases for use as antibacterials. The research team's expertise has been reflected in the success of IPOS (Innovative Physical Organic Solutions), a unit established in 2006 to carry out research in process and other areas of chemistry for the chemical industry. IPOS expanded significantly from 2009 to 2013 and has now collaborated with more than 150 companies, many of them based in Yorkshire/Humberside where regeneration is critically dependent on the success of new, non-traditional, high-technology firms and industries. Through these collaborative projects, IPOS has contributed to the growth and prosperity of both regional and national industry.

Submitting Institution

University of Huddersfield

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Glysure: a commercial clinical continuous glucose sensor

Summary of the impact

A commercial continuous glucose sensor/monitor that provides real time data has been developed by GlySure, a venture capital funded company founded on the basis of Bath chemistry. The sensor enables Tight Glycaemic Control (TGC) for control of glucose levels in patients in Intensive Care Units (ICUs), reducing severe hypoglycaemia, glycaemic variability and the nursing burden, maximising both patient and economic benefit. This has led to (i) £13.5M investment in the company GlySure Ltd directly for development of the system based on the Bath chemistry and (ii) successful results from full clinical trials of the device, involving more than 200 ICU patients, prior to CE approval and launch in the EU.

Submitting Institution

University of Bath

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology

Ilika plc: Driving Global Innovation in Next Generation Materials

Summary of the impact

The unique application of combinatorial chemistry in materials science at Southampton has directly underpinned the success of University spin-out, Ilika Technologies. Since 2008, the breadth of applications of the research has allowed Ilika:

  • to form a partnership, worth around £4m, with Toyota in the development of battery materials for electric vehicles
  • to optimise new phase change memory materials now used by NXP in embedded memory applications, and
  • to create and sell a subsidiary, Altrika Ltd, that has provided cell-based skin regeneration therapies to 50 severe burn victims.

Between 2008 and 2012, Ilika enjoyed considerable growth, doubling employment to 35 staff, increasing turnover by approximately 25% annually, and floating on the AIM with a market capitalisation of £18.7 million.

Submitting Institution

University of Southampton

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Filter Impact Case Studies

Download Impact Case Studies