Log in
The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.
The nanobiotechnology research group at the University of Kent (Bruce et al.) has pioneered the ability to control, manipulate and commercially process magnetite nanoparticles. Two spinout companies, EryDel and Dietheva have been formed, with a €6 million venture capital grant, as a direct result of the Kent-led research. EryDel (in collaboration with Philips Healthcare) are exploiting the materials worldwide for drug delivery (Erydex), with US and European approval for Orphan drug designation given in 2013 for genetic diseases, and Diatheva are marketing the technology for forensic diagnostic kits. The predicted five-year revenue is €35 million with a potential market of €17 billion.
XeraCarb Ltd is a spin-out company formed in 2011 to exploit a class of ceramic composite materials co-invented by Jones. These materials were first devised in 2008 via a Materials and Engineering Research Institute (MERI) Knowledge Transfer activity and developed from 2009 onwards through a series of UK Ministry of Defence (UK MoD)-funded research projects. XeraCarb was spun out after the underpinning research won a national award in 2011 as the most promising UK materials system for commercialisation. The applications for XeraCarb's materials range from body- and vehicle-armour to kiln furniture and wear-resistant components. The company has attracted significant venture capital investment and is valued at over £1m. It has set up an independent production facility, has appointed employees, has been awarded a TSB grant, has materials undergoing trials in respect of a number of applications, and has delivered its first orders.
Research conducted at the University of Cambridge under an EPSRC grant between 1999 and 2002 established the viability of using microwave induced pyrolysis as a process for recovering clean, elemental aluminium and hydrocarbon liquids and gases from waste laminate packaging, thus preventing the need to send this material to landfill. The research has been commercialised by Enval Limited — a multi-award-winning University spin-off founded in 2006 that has attracted approximately £2M funding during the REF period and employs 7 people. A pilot scale unit has been operational since 2011, and the first commercial-scale unit has been constructed and has operated since April 2013.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
Carbon dioxide sequestration is the process by which pressured CO2 is injected into a storage space within the Earth rather than released into the atmosphere. It is one of the major ways that carbon dioxide emissions can be controlled.
Research since 2004 by applied mathematicians at the University of Cambridge into the many different effects that might be encountered during this process has had considerable impact on government and industry groups in determining how the field is viewed and how it should and might be industrially developed. The work played a major role in the CO2CRC conferences and was subsequently reported to the Australian Government by the CO2CRC chair and organisers.
Research at the University of Southampton, into the engineering of complex socio-technical systems, has underpinned new technologies in the area of intelligent energy management, and made Professors Nick Jennings and Alex Rogers trusted sources of advice for energy policymakers, key stakeholders and industrial researchers. The work has had an economic, environmental and societal impact: it has shaped R&D strategies of leading British companies like BAE Systems and Secure Meters; the launch of iPhone apps and websites have supplied private and industrial users with personalised data regarding their energy use, resulting in cost savings and reductions in carbon emissions; it has enabled charities to provide energy-saving advice to households directly; and has won an international technology showcase competition leading to a spinout and commercialisation of research.
Nanoforce Technology Ltd. is a spin-out company wholly owned by QMUL, active in the field of polymeric and ceramic materials. Bridging the gap between academic research and industrial applications, Nanoforce has done business with over 100 companies since 2008, providing the key research expertise and specialist facilities to enable the development of new materials and commercial products, including Sugru® a room temperature vulcanizing silicone rubber, Zelfo® a self-binding cellulose material, and BiotexTM a range of high-performance yarns, fabrics and pre- consolidated sheets based renewable resources such as PLA and natural flax fibres. Nanoforce has been promoting the development and commercialisation of spark plasma sintering (SPS) since 2006, which resulted in Kennametal recently opening the first commercial SPS facility in the UK to produce advanced ceramic armour. Nanoforce's clients have included large multi-nationals such as DSM, Dow Chemical, General Electric, SABIC, L'Oreal, Shell, Sibelco, governmental agencies such as Defence Science and Technology Laboratory (Dstl), and a large number of SME's.
The School of Chemistry has a long track record of pioneering and innovative outreach activities aimed at stimulating public interest and understanding in chemistry research and its societal impact. During the period 2008-2013 it successfully communicated to a wide-ranging audience the significance of a series of "firsts" in the areas of nanoscience and materials for energy applications. Using YouTube, Royal Society Summer Science Exhibitions, roadshows and science festivals, this award-winning approach has engaged hundreds of thousands through digital media and thousands more face-to-face, raising public awareness, inspiring interest in science and delivering educational benefits for students and teachers alike.
This case study focuses on the use of hydrogen in a range of applications, developing the following techniques:
Demonstrating impact in the commercial application of the techniques in the energy, environment and chemical industries; resulting in commercially viable processes and products, generating economic benefit.