Log in
Impact on the environment
Economic impact
Impact on practitioners
Implementing measures that can maintain, as well as improve air quality is a constant challenge faced by local authorities, especially in metropolitan cities. The AVERT, EPSRC/DTI link project, led by Samuel and Morrey of Oxford Brookes University, were tasked at identifying and proposing a new strategy to limit the amount of pollutants from vehicles dynamically using remote sensing and telematics. Firstly, it established the magnitude of real-world emission levels from modern passenger vehicles using a newly developed drive-cycle. Secondly, it demonstrated a broad framework and limitations for using existing on-board computer diagnostic systems (OBD) and remote sensing schemes for the identification of gross polluting vehicles. Finally, it provided a strategy for controlling the vehicle to meet air pollution requirements. The outcomes had direct impact on Government policy on "Cars of the Future", roadside emission monitoring, and the business strategies for both the Go-Ahead Group and Oxonica Ltd.
The research addressed the problem of improving the driver experience of the sound and vibration of their automobile operating under idle conditions in city traffic. As a result of the research, Shell Global Solutions UK developed and successfully adopted a test standard protocol that changed their R&D process for making diesel fuels. The research shifted the process of making fuels from one which were oriented to the product to one that was customer focused. The new test standard protocol and the vibration acceptability metric were also adopted by Ford Motor Company Ltd., Bentley Motors, BMW, Fiat, Ferrari, Jaguar Land Rover, Peugeot-Citroen and Renault.
Prof Zhao's development of an innovative hybrid engine RegenEBD was exploited by its industrial partner, Guangxi Yuchai Machinery Company (Yuchai), the largest bus engine manufacturer in China holding 80% of the domestic market. The first RegenEBD engine buses were operated in Yulin city, where Yuchai is based, in 2011. Yuchai confirmed that these buses have demonstrated notable fuel savings of 4.7-10% (1,100-2,200 litres of fuel saving), equivalent to 3.6-7.2 tonnes of carbon saving per vehicle per year. This led Yuchai to re-align their manufacturing strategies and development efforts for 3 years (2011-2013), investing significant resources to begin manufacturing and retrofitting of RegenEBD engines in 2014. They have employed over 30 new engineers to develop and manufacture RegenEBD and purchased equipment for RegenEBD engine testing and operations. Yuchai expects that hundreds of buses equipped with RegenEBD will be on the road by 2020.
Research undertaken by the Institute for Transport Studies (ITS) at the University of Leeds from 1995 to 2012 has demonstrated that in-vehicle intelligent speed adaption (ISA) - technology to discourage or restrict speeding - reduces drivers' propensity to speed and consequently can dramatically reduce injury and fatality risk. ITS Leeds research has also shown the environmental benefits of these systems and their high acceptance by users and the public. This evidence has led policy-makers at national, European and international levels to advocate ISA adoption. A key impact has been Euro NCAP's decision in 2013 - directly informed by the ITS Leeds research - to explicitly recognise ISA within the safety ratings of new cars. To this end, the ITS Leeds research has informed a significant change to European-wide `quasi-regulation' and, through encouragement to car manufacturers, imposed lasting influence on the safety features of new cars.
Drivers of more than 20,000 Jaguar supercharged cars sold worldwide since 2009 are enjoying handling and safety benefits as a direct result of research at Loughborough University. The active differentials control system in production on Jaguar's XF, XJ and XK vehicles is controlled by an algorithm developed at Loughborough. Funded by Jaguar Cars Ltd, the research from 2002 to 2006 was first adopted, after only minor changes, into the supercharged Jaguar XF programme released in 2009. The system is now also in the new F-type and is being extended, in a modified form, to Range Rovers, starting with the new Range Rover Sport.
This research by the University's Transportation Research Group (TRG) has contributed to the development of sustainable road transport networks both in the UK and other leading cities worldwide. In summary:
Using powertrain system models arising from QUB research Wrightbus Ltd developed an advanced eco-friendly hybrid diesel-electric bus which won the New Bus for London contract worth £230M supplying 600 buses to Transport for London (commencing August 2012).
Demonstrating highly significant economic and environmental impacts the bus has twice the fuel economy of a standard diesel and emits less than half the CO2 and NOx. The full fleet reduces annual CO2 emissions in London by 230,000 tonnes, improving air quality and reducing greenhouse gases.
The company continues to develop the technology in new hybrid vehicles reaching worldwide, including USA, Hong Kong, Singapore and China.
Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.
The HOTFIRE collaborative research project (2004-2008) into advanced engine combustion systems led directly to a new, high specific power output, high fuel economy, low CO2 emissions turbocharged `down-sized' three-cylinder engine that was demonstrated in the Opel Astra car in 2008. The valuable new knowledge, understanding and techniques gained in the HOTFIRE project has directly contributed to the successful delivery of a major engine family project for an ASEAN region OEM client of Lotus Engineering.