Log in
BEAA research has impacted positively on commerce in brewing and biotechnology companies worldwide through continuous collaboration with Aber Instruments, an AU spin-out company formed to commercialise university research. Aber Instruments has supplied over 1000 fermentation monitoring systems world-wide for the on-line measurement of viable biomass concentration, providing improvements in speed and accuracy over previous off-line, culture or stain-based procedures. On-line, real-time monitoring of viability during fermentation reduces costs and improves product quality, leading to practitioners in large breweries including Anheuser Busch, SABMiller, Inbev, Coors, Diageo, Heineken, Suntory and San Miguel adopting the Yeast Monitor as part of their standard operating procedures. The new Futura instrument, which utilises the same technology developed from BEAA research, was launched in 2009 and is now used by major biotechnology companies including Genetech, Novo, Biogen Idec, GlaxoSmithKline, Centocor, Sandoz, Eli Lilly and Genzyme to monitor biomass in a much wider range of fermentations.
In High Gravity (HG) brewing the substrate (the wort§) fermented by the yeast is concentrated from a traditional value of about 12% solids to concentrations of upwards of 20%. Research (1993-2008) by Graham's Stewart's team at Heriot-Watt, into the process of brewing beer and distilling spirits in a more cost effective and quality enhanced manner led to substantial improvements in the HG brewing process, now used worldwide. This allows up to 50% more beer to be made at the same plant and reduces distillation costs. In both industries HG-wort production has allowed very substantial savings (>£555 million) in capital expansion costs.
§The substrate produced by the mashing of malt and grains — primarily consisting of fermentable sugars.
Weak acids (e.g. sorbic acid) are used by food manufacturers to prevent fungal contamination of food and beverages. Professor Archer in the Molecular Microbiology group determined the fungal species that cause such contamination, and identified fungal genes and enzymes that confer resistance to sorbic acid during initial outgrowth of fungal spores. They characterised the biochemistry of the resistance mechanism, enabling design of improved mould inhibitors. These inhibitors, used at the correct time, have improved manufacturing processes to prevent mould contamination and product wastage. Knowledge of mould genetics has also been applied to other industries to improve food additive and biofuel manufacturing processes.