Similar case studies

REF impact found 24 Case Studies

Currently displayed text from case study:

3) Treatments and diagnostics for Alzheimer's disease

Summary of the impact

Alzheimer's disease (AD) affects one in seven of the population over 60 years of age, and represents an increasing burden on worldwide medical and care resources. Treatments currently available are symptomatic. Despite pharmaceutical industry efforts there has been little indication of a marketable product for long-term treatment.

To address this problem, a joint venture was established in 2001 between the University of Aberdeen and TauRx Pharmaceuticals. A team was created of chemists, biologists, animal behaviourists, working together with a clinical trial team. A drug effective against the progress of AD based on the compound methylene blue was synthesised and scaled up within the Chemistry Department (led by Professor John Storey), with a quality that was proved acceptable through successful phase two clinical trials (2006-8), and is now used in phase three clinical trials which are due to complete in 2015. Several other drug candidates have also been developed and evaluated in pre-clinical and phase one clinical studies that show promise. Collaborations with commercial pharmaceutical companies have as a result led to the manufacture of significant quantities of drug medicines for TauRx Pharmaceuticals based on IP generated within the Chemistry Department and these drugs have been used in clinical trials and for named patient supply (c. 60 patients). This has resulted in increased commercial revenue for these companies and the creation of new employment.

Submitting Institution

University of Aberdeen

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry

Discovery and commercialisation of a new drug for the treatment of Alzheimer's disease

Summary of the impact

Pioneering research led by the University of Aberdeen has directly resulted in the development of an investigational medicinal product for the long-term management and prevention of Alzheimer's disease, breaking new ground in the search for effective Alzheimer's treatments. Although not yet commercially available, this drug has already benefited more than 100 patients and their families. A new spin-out company created to develop the drug has created new jobs and attracted more than US$335 million in investment since 2008. Extensive media coverage of the research has generated increased public awareness of the disease and Aberdeen's cutting-edge research and ability to raise investment. The claimed impact is therefore that a new spin-out company was formed; investments from and collaborations with industry in research and development were generated; and new employment created.

Submitting Institution

University of Aberdeen

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Neurosciences

2. ProTide Technology: Transforming drug discovery of nucleoside-based anti-viral and anti-cancer agents.

Summary of the impact

ProTide technology, discovered by the McGuigan team at Cardiff University, is a pro-drug strategy with proven capacity to generate new drug candidates for nucleoside-based antiviral and anti- cancer indications. In the assessment period the McGuigan team has attracted more than £2 million direct research funding through sustained collaborations on ProTide technology with global pharmaceutical companies and smaller biotech firms in the USA and Europe. In the same period, either through working directly with Cardiff or by independent adoption of McGuigan's research, eight ProTide entities have progressed to clinical trials as cancer, HIV and hepatitis C treatments. The technology is demonstrating significant commercial impact for companies with ProTide-based drug candidates.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Technology: Medical Biotechnology
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

An anti-inflammatory molecule for the pharmaceutical industry

Summary of the impact

A new anti-inflammatory molecule FX125L was developed by David Fox at Warwick, in collaboration with David Grainger (Department of Medicine, Cambridge) and Funxional Therapeutics Ltd (FXT). Research in lead optimization, mechanistic preclinical chemistry, synthetic route development (for scale-up), and CMC (chemistry, manufacturing and controls) was conducted at Warwick. As a result FX125L completed Phase 1 and entered Phase 2 clinical trials in humans for the treatment of asthma or other inflammatory diseases. Its sale to Boehringer Ingelheim generated a multi-million pound return for FXT and its investors.

Submitting Institution

University of Warwick

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Immunology, Pharmacology and Pharmaceutical Sciences

Novel treatment for psoriatic arthritis receives regulatory approval

Summary of the impact

Psoriatic arthritis (PsA) is a chronic inflammatory disease of joints, skin and tendons that affects 0.5-0.8% of the population worldwide. PsA can cause substantial psychological and social problems and also causes increased risk of death from cardiovascular disease. Research conducted by Prof Iain McInnes at the University of Glasgow in partnership with leading pharmaceutical company, Janssen, has provided robust evidence of the clinical benefits and safety of the cytokine blocker ustekinumab, leading to its approval for use for PsA by the European Medicines Agency in July 2013. This was the first approval of a PsA drug with a new mode of action in a decade, providing a novel treatment for approximately 1.25 million PsA patients across Europe.

Submitting Institution

University of Glasgow

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Immunology

Fixing Fractures Fast: ApaTech™ – Development of Synthetic Bone Grafts with Improved Efficacy and Reliability

Summary of the impact

Seminal materials research at QMUL and its technological transfer via the QMUL spin-out ApaTech™, has led to the development of a range of cost-effective synthetic bone graft (SBG) products (ApaPore™, Actifuse™ and Inductigraft™), which safely and effectively stimulate rapid bone healing and are more reliable than previous autograft procedures. The successful use of the ApaTech™ range of products has delivered impact on health and welfare by reducing post-operative infection risks and improving recovery rates. To date, ApaTech™ products have been used to treat over 370,000 patients in over 30 countries. In 2010, ApaTech™ had 4% of the US SBG market, a $20 million annual turnover, employed 160 people in nine countries, and was sold to Baxter International for £220 million. By 2012, ApaTech™ products had attained a 10% share of the global SBG market (treating 125,000 patients per annum), estimated to be around $510 million. Other impacts include altering surgical clinical practice away from the use of autograft.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Towards a new, safe, oral treatment for psoriasis and psoriatic arthritis

Summary of the impact

Psoriasis is a chronic inflammatory skin disorder affecting up to 2.5% of the world's population, approximately 30% of whom eventually develop psoriatic arthritis, which can lead to debilitating long-term health problems. Current therapies are limited owing to side effects or reductions in efficacy. Prof Miles Houslay, University of Glasgow has performed internationally recognised research on drug targets to alleviate the symptoms of inflammatory skin conditions. Working with Celgene, Houslay identified lead compounds and assays to screen promising early compounds for the treatment of psoriasis and psoriatic arthritis for clinical development. This identified the lead compound (apremilast), which was subsequently developed by Celgene. Between 2010 and 2013, phase III trials on apremilast have validated it as a safe, clinically effective oral drug, on the basis of which apremilast was submitted for regulatory approval of its use in patients with psoriatic arthritis to the health authorities of the USA and Canada in March 2013.

Submitting Institution

University of Glasgow

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Immunology, Oncology and Carcinogenesis

Improved drug discovery and development through use of novel iridium catalysts

Summary of the impact

Labelled compounds form an essential part of drug discovery and development within the pharmaceutical industry. Novel iridium catalysts, developed by Kerr at WestCHEM since 2008, have introduced a step-change in the ability to label pharmaceutical candidate compounds with radioactive (tritium) or non-radioactive (deuterium) isotopes.

The catalysts are applicable to specific types of compounds that comprise approximately one-third of all drug candidates. Advantages of the catalysts include greater efficacy (less catalyst needed and higher yield of labelled product, giving cost savings), greater speed (efficiency savings), and a significant decrease in radioactive waste compared with previous methods (environmental and safety benefits).

Even since 2008, their adoption within the pharmaceutical industry has been extremely rapid; e.g., the multinational pharmaceutical company AstraZeneca now applies the Kerr methodology to 90% of their relevant candidate compounds. Additional impact has been achieved by Strem Chemicals who have been manufacturing and marketing the catalysts worldwide since October 2012. Even in that very short period, multiple sales have been made on three continents providing economic benefit to the company.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

"Shark-antibodies" as a platform for biologics drug development

Summary of the impact

Together the University of Aberdeen and Aberdeen city have become a major centre for biologics, the synthesis of medicines from compounds derived from living organisms. Commerce and industry have invested heavily in the process, creating specialist knowledge, jobs and an internationally-recognised network of expertise that promises further growth. This has arisen from ground-breaking research in Aberdeen into the VNAR antibody class that are the smallest binding sites so far identified in the animal kingdom and led to the validation of a new drug discovery platform. Spin-out companies were created (Haptogen Ltd, Cyclogenix Ltd and the pre-commercialisation vehicle Elasmogen) to exploit the emerging technology, which has completed successful efficacy trials in several animal models including late stage pre-clinical models, with trials in humans expected.

The claimed impact is therefore that: spin-outs have been created, highly skilled people have taken up specialist roles in companies; industry and venture money has been invested in patent protected research and development, business has adopted a new technology, award winning industry collaborations have been forged and jobs have been created.

Submitting Institution

University of Aberdeen

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology

Miltefosine for the treatment of leishmaniasis

Summary of the impact

Miltefosine is the first oral drug to be developed for the treatment of leishmaniasis, a worldwide parasitic infection with up to 12m cases. Also developed as a cancer drug, miltefosine was identified and tested for leishmaniasis therapy at LSHTM and has been added to WHO's essential medicines list as a result of subsequent clinical trials. It has been widely used for the treatment of visceral leishmaniasis (VL) in India, Nepal and Bangladesh, and for the cutaneous form of the disease in Latin America. Phase III and IV clinical trials of combination therapies including miltefosine have been carried out in India.

Submitting Institution

London School of Hygiene & Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Medical Microbiology

Filter Impact Case Studies

Download Impact Case Studies