Log in
This case study describes how basic research to develop analytical methodologies for measuring inorganic arsenic in food, and its subsequent application to rice and rice-based food commodities, led directly to proposals to establish global agreements describing the maximum permissible level of a class I carcinogen, inorganic arsenic, in rice. The impact of the research conducted in Aberdeen is still to be fully developed, but as a result of our research has been identified as absolutely pivotal by food standards agencies in China, USA, the UK, and the European Union, in leading to policy decisions and changes to established practice amongst policy makers under the leadership of the Food & Agriculture Organisation (FAO) of the UN and the World Health Organization (WHO).
UCL research findings about the source, transport and fate of arsenic in sediments exploited for water supply in the Bengal Basin have underpinned the development and implementation of policy by the Bangladesh government, international donors and non-governmental organisations (NGOs), and led to improvements in public health security across southern Bangladesh. By demonstrating that arsenic pollution in Bangladesh is not caused by irrigation pumping, the research countered popular demands and government intentions to curb irrigation, thereby supporting the country's continued food-grain self-sufficiency. Subsequent UCL explanations of the geochemical and hydraulic processes controlling groundwater arsenic have underpinned further revision of the government's strategies for monitoring groundwater and mitigating the crisis; the resultant reduction in arsenic exposure among approximately 10 million people has significantly enhanced public health security.
A Queen's University team led by Bhaskar Sen Gupta installed the world's first chemical free water treatment plant in the arsenic belt of India to benefit rural people living on per capita income of less than 1 US$ a day. With nine facilities in India, Cambodia and Malaysia, more than 13,000 people are receiving their water supply from Subterranean Arsenic Removal (SAR) plants (www.insituarsenic.org). Many villagers who started using clean water from the community plants in 2008 have shown significant signs of recovery from chronic arsenicosis.