Log in
The research undertaken by Jonathan Osborne and colleagues in science education at King's has contributed substantially to contemporary curriculum and assessment policy and practice both in the UK and internationally. This programme of research has directly influenced: the Nuffield/OCR `Twenty First Century Science' curriculum, currently offered by around 1000 schools in England and Wales; the emphasis on `how science works' in the English and Welsh science curriculum; the US Framework for K-12 science education published in 2012 with its new emphasis on scientific practices; and the framework being used as a basis for the OECD Assessment of Science by the Programme for International Student Achievement (PISA) which will be administered in 70 countries in 2015.
Over more than two decades research conducted at Leeds has had two interrelated impacts: i) supporting the decision-making process of those responsible for reforming the school science curriculum by providing timely and robust research evidence, for example within the recent DfE National Curriculum Review in England; ii) inspiring follow-on research and development activities funded by professional organisations, whose aim is to inform and influence science education policy and practice.
Research by Oxford Brookes University identified that teaching for inclusive challenge in primary science lessons, with an emphasis on classroom discussions, practical work and conceptual challenge, increased pupils' enthusiasm for science and also their attainment in the subject. Led by Helen Wilson, David Coates and Jenny Mant, research insights have been used to produce evidence-based professional development for primary school teachers. This has been delivered to thousands of teachers, through training events and programmes, through a dedicated website, and through training led by Local Authority advisors who have chosen to disseminate our materials. The impact on the teachers' practice has been to encourage pupils' higher order thinking in science lessons through an emphasis on questioning, discussion and practical scientific enquiry. The ultimate impact has therefore been on the learning experiences of school pupils.
The need to produce more science graduates to meet the ambitions of a knowledge-based economy has been recognised in several UK Government initiatives, yet despite the growth in University admissions since 1986 the percentage of students studying science has fallen. Research led by Tina Jarvis has had significant impact on the development of effective science CPD, designed to address the problem that many primary school teachers lack competence and confidence in science teaching. This research has underpinned the establishment of two CPD Centres, which have provided CPD for over 7,300 teachers, technicians and teaching assistants in the UK during the assessment period and a range of projects which have achieved sustained impact on teachers' practice and pupils' learning and engagement, regionally, nationally and across Europe, involving over 30 partners across 23 countries.
This longstanding research and development programme on teaching and learning conceptual scientific content has resulted in beneficial impacts on the day-to-day teaching practices of secondary school science teachers within and beyond the UK. The programme has resulted in three broad areas of impact:
The Improving Science Together (IST) project developed pupils' enquiry skills, teachers' assessment and curriculum continuity across the primary-secondary transfer in 24 schools. This research had an impact upon public policy through its inclusion on the Department for Children, Schools and Families (DCSF) website as a case study supporting government guidance on primary-secondary transfer. Its impact upon practitioners in the project schools and authorities has been to change their practice in science enquiry assessment and primary-secondary transfer; it has a continuing wider impact on the work of teachers and trainees across the UK and internationally through web-based materials and training.
This study details the impact of the first British Library exhibition on science fiction, produced in partnership with the Discovery Channel. The exhibition attracted 114,878 visitors (target attendance was 100,000), far beyond any "core" readership, and featured over 200 books, films, recordings, manuscripts, magazines and objects. Exploring sometimes conflicting ideas of how science fiction developed over 2000 years, and what it does, the exhibition gave a cultural and historical context for science fiction as an international and historically rich form of speculative literature. It also generated new interest amongst diverse audiences — including in libraries, the media, and in schools — and transformed popular perceptions (of both core fans and literary disparagers) of science fiction as a genre, and the role of women in the genre.
With computing science in schools and universities suffering from an international education crisis, University of Glasgow research has driven the development of new school curriculum across the UK. The learning and teaching materials developed at Glasgow rethink the way computing science is taught, with over 10,000 pupils taking part in workshops in Scotland and 1,600 teachers in 20 countries using the materials. In the US, this research has attracted 20 high schools and 2,000 university students into programmes demonstrating new methods in teaching computational thinking. Dr Quintin Cutts has also contributed to the Scottish Qualifications Authority's assessments for the new Scottish curriculum, consulting on assessment techniques and nationwide Computing Science exam papers.
The impact of this work lies in its increased engagement with, and attainment in, science and technology of pupils of varied ages and social background. It uses a broad portfolio of innovative approaches, (from novel labs to science-art theatre collaborations and community-based archaeo-astronomy projects); using visual, kinaesthetic and empathetic learning models to promote STEM learning alongside cultural enrichment and improved literacy. The work has led to changes in teacher training practice, aspects of which have been embedded locally and internationally. Its interdisciplinary nature offers new models in education for sustainable development.
Research at Bradford has focused on the Biological Non-Proliferation work of the Bradford Disarmament Research Centre (BDRC). The research-informed impact of this work is two-fold. Firstly BDRC has influenced, and continues to influence, decision- and policy-making involving 170 States on how to strengthen global governance through improvements to the Biological and Toxin Weapons Convention (BTWC). As a consequence of this influence BDRC has changed the practices of institutions and individual researchers and thus has, through novel training and curriculum development, helped foster a culture of biosecurity to reduce the risk of inadvertent or deliberate misuse of life and associated science research.