Log in
Kadhim`s research at Oxford Brookes University into the `non-targeted effects` of radiation has had extensive conceptual impact leading to reconsideration of the recommended dose limits permissible in both clinical and environmental contexts. Her research has been referenced by major international bodies such as UNSCEAR (United Nations) and has led to her advisory role to UK Government Departments through the Committee on Medical Aspects of Radiation. Her contribution to the 2013 report to the Department of Health has already impacted health risk assessment and clinical radiotherapy through its recommendations for new lower thresholds of dose levels to protect patient health. This has already contributed to changes in the clinical practice guidelines on low-dose radiation usage for CT scans.
Fundamental research on developmental biology of skin and skin appendages carried out by Prof Colin Jahoda's group has led to progress in the isolation of specific adult cell populations, understanding of their roles in skin and hair regeneration, and advances towards clinical applications. This has led to the development of new methods to replace human hair follicles, and has been the basis for multi-million dollar research and development projects by companies in the UK, the US and Japan. The Durham research has enabled Intercytex Ltd. to attract £27M in VC funding and £30M in an IPO in 2009, progressing to Phase IIa clinical trials. The US company Aderans Research Institute has spent $100 million in developing this "hair cloning" technology. A Durham University spinout company, ClarinnisBio, was also established in 2009, and has to date attracted ca. £1M in investment and has employed two scientists, in a region of the UK that suffers from relatively high levels of unemployment.
Ground breaking and unique research carried out at the Centre for Skin Sciences at the University of Bradford has led to the realization of commercial opportunities in two very high-value consumer brands. Technologies developed in collaboration with multi-national personal-care and cosmetic companies for the treatment of skin hyper-pigmentation have been launched on the market and have reached thousands of consumers. The first product launched by Alliance-Boots (April 2012) is sold within the UK's premier skincare range (No. 7). Success in Britain led to its launch in the US, Finland and Thailand. A second product within the Diorsnow range has been launched by Parfum Dior — a branch of LVMH Moët Hennessy • Louis Vuitton S.A.
Cancer research at the University of Salford focuses on developing new and improved treatments for cancer, particularly for children with cancer, demonstrating the following impact:
Sumbayev and colleagues have shown that gold nanoparticles represent an excellent platform for the specific delivery of drugs, targeting the HIF-1 biochemical pathway as a novel therapeutic target for diseases such as allergy, leukaemia and other autoimmune disorders. Two international, non-academic institutions have altered the direction of their work as a result of this research and two SMEs have revised their operational procedures and invested in the applied research that derives from this work.
Mouse disease models provide an invaluable tool to the medical sciences, underpinning the understanding of disease mechanisms and the development of therapeutic interventions. A new cultivation protocol for deriving mouse embryonic stem (ES) cells was developed by Dr Nichols between 2006 and 2009. This has facilitated the production of ES cells from disease model mice that can be manipulated in vitro and used to establish modified transgenic mice with the required genetic profile, in a single generation. This method reduces the number of mice needed, as well as associated costs and staff time, by 90%. Dr Nichols has trained industry delegates from international transgenics companies and transgenic facility managers in the new technology. As a consequence, a minimum of 26820 fewer mice have been used in experiments, and a minimum of £536k have been saved since 2009.
Research by Professor Parmjit Jat (first at the Ludwig Institute for Cancer Research, then part of UCL; later at the UCL Institute of Neurology) established and applied the critically important scientific concept of conditional immortalisation to a wide variety of cell lines, enabling cells to be grown indefinitely in vitro but differentiate upon altering the growth conditions. Two companies were established in partnership with Jat to exploit this research, ReNeuron (now worth £63.5m and publicly traded on the London AIM market) and XCellSyz (now part of Lonza AG). More than 20 patents based on Professor Jat's work have been issued. Reagents based on his research have been evaluated, licensed and used by 17 companies worldwide: Amgen, Amylin, Boehringer Mannheim, Cell Genesys, Chiron, Eli Lilly, Genentech Inc., Genetics Institute, Immunex, Johnson & Johnson, Medarex, Novartis, Ortho Pharm., Pfizer Inc., Regeneron, ReNeuron, Takeda, EMD Serono, and XCellSyZ/Cambrex Bioscience/Lonza.
The provision of effective and sustainable healthcare is a major challenge for society. In the developed world escalating costs are placing a huge burden on finite resources; in the developing world, where financial resources are often extremely limited, providing affordable healthcare is an even greater problem. One innovative route to help alleviate these problems is through drug redeployment, whereby existing drugs are employed in new ways to tackle serious diseases. Combining their knowledge of haematological disease gained from their research over the past 20 years together with a drug redeployment strategy, researchers in the School of Biosciences have developed and trialled new interventions for two blood cell cancers, Acute Myeloid Leukaemia (AML) and Burkitt's Lymphoma (BL), based on the administration of a combination of the lipid lowering drug Bezalip (Bez) and the female contraceptive Provera (MPA). As a result:
A novel test for prostate cancer was developed from research in mitochondrial genetics conducted at Newcastle University. The Prostate Core Mitomic Test was the first of its kind and is now commercially available in North America. It provides molecular evidence to confirm conventional pathology results showing that men identified as being at risk of prostate cancer are, at the time of examination, free of disease. This is an important patient benefit, as conventional pathology has a 30% chance of missing prostate cancer. The Mitomic test obviates the short-term need for a follow-up biopsy, which is an invasive and very uncomfortable procedure. It is also capable of identifying some men at high risk of having prostate cancer that conventional pathology would miss. The test was introduced to the American market in June 2011 and has generated a multi-million dollar investment and turnover.