Log in
We developed technology that uses polymer particles to replace much of the water that is employed in conventional clothes washing. The innovative technology is protected by several international patents and was commercialised in 2006 via the spin-out company Xeros Ltd. In August 2012, Xeros sold its first commercial-scale (25kg capacity) machine in the UK high street market and also installed the commercial-scale machine at a US commercial laundry, enabling typical savings of upto 70% less water, 50% less chemicals and 50% less energy than traditional methods and, hence, significantly reduced carbon footprint; Xeros plans to introduce a domestic-scale washing machine in 2014.
The activities of the Organic Materials Innovation Centre (OMIC) at the University of Manchester generate impact from its research activities through knowledge transfer to industry. This is exemplified by:
Provision of research-based training in the field of printed electronics and sensors to over 250 people from 2008 onwards.
Research in the Welsh Centre for Printing and Coating (WCPC) at Swansea University has produced a sophisticated understanding of the physics of the fluids and interfaces in the printing process, and has pioneered the development of printing with complex, multi-phase inks. The application in volume manufacture made possible by the research has generated significant, multi-million pound, economic impact in the printable electronics and packaging industries, directly leading to the creation of new high technology printed products, including next generation lighting. It has also led to the development of the supply chain for complex functional inks, whilst a comprehensive revision of the ISO standard on ink colorimetric characterisation in 2013 has demonstrable impact on practitioners.
Prof Silver's research on the development of the technology to fabricate 3D electro-optic circuits via ink-jet and screen printing has provided a more sustainable solution to conventional back-lit posters (energy saving up to 75%) and printed displays. Due to the flexibility of the components (they can be printed in any shape or design) and low maintenance (battery operational), the technology has been commercially exploited by several industrial collaborators. Johnson Matthey have used Brunel research to gain knowledge of the market and supply chain, to sell silver and palladium nano-particles for ink-jet printing and to inform the investment of around £2M on R&D in this area. Intrinsiq Materials Ltd successfully marketed copper-based inks for ink-jet printing of ACEL displays, allowing the company to employ 22 additional staff. In addition, they have secured $4M of venture capital investment to develop the technology. Printed Electronics Ltd have secured £8.6M of investment to develop a high-volume supply chain for printed electronics, and have employed an additional 9 staff within the company. As a result of working with Brunel, Keeling and Walker have begun to sell ink that contains antimony-doped tin oxide nano-powders.
The development of disentangled, ultrahigh molecular weight polyethylene at Loughborough University since January 2007 has provided an environmental friendly route to the manufacture of high modulus, high tensile strength tapes with applications ranging from body armour to helmets, ropes and cables. Commercialisation is being undertaken by the Japanese company Teijin, in the Netherlands, under the brand name Endumax®. The new business, started in 2011, now employs >80 staff and predicts annual sales of >€15M from 2014 with an increase of ~10% over the first five years. Competitors such as Du Pont (Tensylon®) and DSM (Dyneema BT10®) have also initiated development of products using the new process route.
Workers at the University of Leeds researched, then developed and patented the `hot compaction' process for the manufacture of single polymer composites [1]. In this process highly oriented polymer fibres are heated so that a proportion of the surface of every oriented element melts. Upon cooling, this skin recrystallises to form the matrix of a self-reinforced fibre composite. Important resultant properties include high stiffness and strength, lightweight and outstanding impact strength, leading to a material with crucial commercial advantage. The reach of this impact is demonstrated by commercialisation of the polymer composite over a wide range of applications including anti-ballistic body armour, sports goods (Nike, Bauer), lightweight luggage (Samsonite), audio speakers (Wharfedale) and radar covers for helicopters (Westland). Examples include Samsonite using the material Curv® to manufacture two new high profile product ranges (Cosmolite and Cubelite) and Bauer using it in their elite-level ice hockey skate range (SUPREME and VAPOR).
The Thin Film Centre (TFC) group at UWS pioneered thin film materials and processes for plastic electronics with Dupont Teijin Films (DTF) Ltd and Plastic Logic (PL) Ltd over a period of nine years. This work was pivotal to the growth of PL from a start-up position resulting in the first all-polymer e-book reader and was the basis of a world leading position in the supply of specialised substrates for DTF Ltd.
A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.
Research in Durham Physics Department on optical waveguides was used to build a novel interferometer which can measure real time changes in dimension and density of a thin film adsorbed on a sensor chip. This has multiple applications in surface science and biophysics, e.g. in measuring conformal and other structural changes in proteins as they interact with drug candidate molecules. The device was developed as a commercial product by a spin-out company, Farfield Sensors, which sold the interferometers to research institutes and industry. The Farfield Group was bought in 2010 by Biolin Scientific for £2.5M.
Research into the characterisation, functional properties and applications of hydrocolloids which improves the stability of beverage products has been transferred to end users through the University's Phillips Hydrocolloids Research Centre. The associated development of industry standards for acacia gum supply has resulted in more than 44 companies since 2008 directly using the University's analytical services or adopting its methodologies, enabling improvements in productivity, product stability and costs. The Gum Arabic Board of Sudan invited the University to assist in improving gum arabic industry practices and methodologies for processing, storage and traceability from source in supply of consistent and quality materials, producing benefits in terms of volume of business.