Similar case studies

REF impact found 11 Case Studies

Currently displayed text from case study:

1k. Discovery that Ramularia collo cygni causes leaf spotting in barley and development of a diagnostic to target fungicide use, saving the industry £5.4M per annum

Summary of the impact

Impact: Economic: The first fungicide-based control schemes minimising UK barley yield losses (saving approx. 516K tonnes / £95.1M per annum). A risk assessment method, which minimised pesticide usage.

Significance: Barley is the second most popular cereal crop grown in the UK — in 2012, 5.52 million tonnes of barley were grown (market value £1.02 billion). The research led to savings to the UK farming industry of ~£5.4 million per annum

Beneficiaries: Farmers, malting and brewing industries, UK tax revenue.

Attribution: Drs. Oxley, Havis, Hughes, Fountaine, and Burnett (SRUC) identified the pathogen and produced a field test for early identification of infestation.

Reach: Barley growing, malting and brewing sectors, seed and agrochemical industries UK-wide and in Ireland.

Submitting Institutions

University of Edinburgh,SRUC

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Genetics, Plant Biology
Agricultural and Veterinary Sciences: Crop and Pasture Production

Improvement of Seed Vigour and Performance in Crop Production

Summary of the impact

Reliable seed performance is the cornerstone of crop establishment, an important trait that determines the cost and resource efficiency of crop production. In practice, seed performance varies, and this creates a substantial global problem for seed producers and farmers. From 1980 until the present time, Finch-Savage and Rowse have provided knowledge, patented techniques and genetic backgrounds from their research programmes to enhance the performance of seeds in crop production. Seed production businesses worldwide use and continue to adopt these techniques. These include both national (e.g. Elsoms Seeds, UK; Seed Enhancements, New Zealand) and global (e.g. Syngenta and Bayer) companies. Therefore, the work of Finch-Savage and Rowse has had, and continues to have, a direct impact on food security, sustainable crop production and the profitability of farming and seed production businesses.

Submitting Institution

University of Warwick

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics, Plant Biology
Technology: Medical Biotechnology

Fungus research: impacts on pest control, heritage conservation and public awareness of science

Summary of the impact

Research over the last 20 years by Jane Nicklin (née Faull) and her research group has established expertise in fungi, which has led to impacts in three areas: impacts on the licensing of commercial products for the control of insect pests which affect food crops, which have led to a new product being licensed in the US to the benefit of vine growers; impacts on heritage conservation, where the work has benefitted English Heritage, the National Trust and many other conservation groups; and impacts on public awareness and media engagement with science, in particular through her work with Channel 4's How Clean is your House? in 2009.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Genetics, Microbiology, Zoology

Industrial process enhancements: improved efficacy of weak acid anti-fungal preservatives used in foods and beverages, and other manufacturing improvements.

Summary of the impact

Weak acids (e.g. sorbic acid) are used by food manufacturers to prevent fungal contamination of food and beverages. Professor Archer in the Molecular Microbiology group determined the fungal species that cause such contamination, and identified fungal genes and enzymes that confer resistance to sorbic acid during initial outgrowth of fungal spores. They characterised the biochemistry of the resistance mechanism, enabling design of improved mould inhibitors. These inhibitors, used at the correct time, have improved manufacturing processes to prevent mould contamination and product wastage. Knowledge of mould genetics has also been applied to other industries to improve food additive and biofuel manufacturing processes.

Submitting Institution

University of Nottingham

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Genetics, Microbiology

Identification and quantification of anticoagulant resistance in Norway rats and house mice: informing guidance and risk mitigation strategies.

Summary of the impact

Local authorities, the UK government and the European Commission have benefitted from the widespread application of new molecular methodologies, developed in 2005 and applied by the University of Reading's Vertebrate Pests Unit (VPU) to identify and quantify anticoagulant rodenticide resistance in rodent populations. Rodents are a major global pest that consumes our food, causes contamination with urine and faeces, damages structures through gnawing, transmits diseases, and impacts on species of conservation concern. Due to historical success and recent regulatory restrictions, anticoagulant rodenticides are the most common control method for these pests. However, physiological resistance to anticoagulants is now widespread and the VPU has been involved in mapping this resistance and identifying the genetic basis for the resistance. Their research has led to new methodologies to identify anticoagulant resistance that have been adopted by the global plant science industry and to new guidance in treating resistant populations that has been adopted by the European biocides industry.

Submitting Institution

University of Reading

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics

Improving wheat yield and quality by optimising crop management strategies

Summary of the impact

University of Nottingham (UoN) research into optimum plant populations and lodging in wheat has led to advances in agronomic practices for winter wheat in the UK, in particular changes in the way that seed rates are calculated (by number, rather than weight) to establish optimum plant populations. Most significantly, growers and agronomists now have an improved understanding of the crop characteristics that affect wheat lodging risk and have made changes to crop management to minimise the problem. This has led to reduced incidence of lodging in the UK, thereby protecting yield and quality of UK's most important arable crop.

Submitting Institution

University of Nottingham

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Economic

Research Subject Area(s)

Environmental Sciences: Soil Sciences
Biological Sciences: Plant Biology
Agricultural and Veterinary Sciences: Crop and Pasture Production

Better pest control in Africa and Asia through biological pesticides and insect resistant crops

Summary of the impact

Research and knowledge dissemination led by Greenwich on biological pesticides has made a major contribution to the introduction of novel safe commercial pesticides based on insect viruses to help farmers overcome the problems of chemical resistance in major crop pests in Asia and Africa. Research at Greenwich identified effective virus strains, methods of production and formulation which were then developed and evaluated with in country research collaborators before being transferred to local SMEs to start up production in India, Thailand, Kenya and Tanzania. Greenwich advised governments on adopting suitable regulation to support the registration and sale of these novel pesticides.

Submitting Institution

University of Greenwich

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Genetics, Microbiology
Agricultural and Veterinary Sciences: Crop and Pasture Production

Reducing Waste in the Fresh Produce Supply Chain

Summary of the impact

Cranfield's work on ethylene supplemented storage is now exploited in the supply chains to major supermarkets in the UK, including Waitrose and Tesco, reducing waste and avoiding volatility in supply for fresh food products such as onions and potatoes. By prolonging storage life by up to six weeks it is also having a positive impact on the UK's self-sufficiency in these products, displacing imports from overseas.

Complementary work has also led to commercial ethylene scrubbing technologies for packaging, which typically save around 50% of in-store waste and add two days to the product life for a range of fruit and vegetables. Such packing is now in use in most mainstream UK supermarkets, and in the USA where it has created a new export market for the manufacturer.

Submitting Institution

Cranfield University

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Genetics, Plant Biology

Using Biotechnology to Protect Plants against Invertebrate Pests

Summary of the impact

Durham has a long-standing record of research into improving the resistance of crop plants towards pests, which includes pioneering work on genetic engineering of plants for insect resistance. The CpTI gene developed in Durham for enhancing insect resistance in transgenic crops has had a major impact on Chinese agriculture, due to the widespread deployment of GM cotton containing genes encoding Bacillus thuringiensis (Bt) toxin and CpTI. The SGK 321 transgenic cotton line was approved for commercial growing in China in 1999, and by the current REF period Bt/CpTI cotton was grown on approximately 0.5 million hectares of land, representing approximately 15% of the total transgenic cotton grown (which in turn represented 67% of total cotton production). The economic value of Bt/CpTI cotton is estimated as approx. £600 million per year.

Submitting Institution

University of Durham

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Zoology
Agricultural and Veterinary Sciences: Crop and Pasture Production, Horticultural Production

R: Community-directed delivery of doxycycline in Cameroon demonstrates effectiveness as a treatment for onchocerciasis (river blindness) in Africa that avoids adverse effects associated with ivermectin

Summary of the impact

Impact: Health and welfare and public healthcare policy; demonstrating that community-directed treatment of onchocerciasis with doxycycline is effective where ivermectin is contra-indicated.

Significance: 12,936 onchocerciasis patients were treated safely and protected for at least 4 years. The treatment regime has been adopted by the US Centers for Disease Control and Prevention, the World Health Organization and governments.

Beneficiaries: Patients with onchocerciasis; governments and policy-makers.

Attribution: Studies performed by a long-standing African-European partnership formed and led by Taylor (UoE).

Reach: International; up to 8 million people in the Congo basin; onchocerciasis patients in Africa where ivermectin is not appropriate plus those in South America participating in focal eradication campaigns.

Submitting Institution

University of Edinburgh

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Medical Microbiology, Public Health and Health Services

Filter Impact Case Studies

Download Impact Case Studies