Log in
High power fibre laser research undertaken at the University of Southampton has led to the creation of a new business sector in the generation of highly efficient and highly practical fibre laser technology. This has revolutionised areas of industrial material processing and enabled the development of specialist components for high-end industries (such as aviation and defence) as well as an array of new medical devices, procedures and manufacturing technologies. The research is also directly responsible for the commercial success and sustained growth of a spin-out company, SPI Lasers Ltd, which has an annual turnover of over £40 million and employs more than 250 people in the Southampton area.
This research has led to the creation of new business sectors in laser development for medical and healthcare applications, which has enabled the creation of a world-wide market worth US$96 million in 2011, and a local spin-out, Fianium Ltd, which now has more than 50 employees and an annual turnover of around £10 million. Exploiting a radically new optical component invented at the University of Southampton, the microstructured optical fibre (MOF), this research has led to economic benefit through the creation of hundreds of jobs worldwide, and enabled the development of new diagnostic and medical technologies.
Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.
The development of a high average power, all-fibre integrated, supercontinuum (or "white light") source, has led to a completely new product that has had significant commercial impact on the fibre laser and applications market place. The basic science, the technologically important power scaling and all-fibre integration were undertaken and first demonstrated by Imperial College staff. This device is currently sold as a compact free standing device by companies such as Fianium, NKT Photonics and IPG Photonics. Sales of supercontinuum lasers at Fianium alone have greatly exceeded £10M. The device has also been successfully incorporated into spectroscopic and medical imaging instrumentation generating new business activity through this disruptive technological change.
The development of a family of compact and efficient, high-power, fibre-based lasers that are designed to operate over broad wavelength ranges has led to new product lines that have had recognizable economic impact on the commercial laser market place. The basic research on these unique lasers was initially undertaken by Imperial College London and their development, power scaling and application were carried out in collaboration with IPG Photonics Corporation, the world's leading manufacturer of high power fibre lasers and amplifiers. Devices operating in several wavelength ranges have been particularly commercially successful in the scientific laser market and have also been applied in various clinical trials and treatments, demonstrating impact in the heath sector. Sales of the high-power, fibre-based lasers with IPG Photonics have exceeded $3M in the past few years.
Research by Bath physicists into non-linear effects in optical fibres has led directly to the development of a new technology: bright white light ("supercontinuum") lasers which remove the need for multiple single wavelength laser systems in low power applications. Based on a successful collaboration with Bath, these lasers are marketed by Fianium Ltd (est. 2003). Since 2008 Fianium has expanded greatly [text removed for publication]. In recognition of this success, Fianium received the Queen's Award for Enterprise in both 2009 and 2012. Bath physicists and Fianium continue to engage in knowledge exchange projects which has resulted in over £1M of DTI/TSB investment funding, [text removed for publication].
Research into distributed optical fibre sensing undertaken at the Optoelectronics Research Centre (ORC) at the University of Southampton has had profound economic and environmental impact within the oil and gas industries in both extraction efficiency from existing reservoirs and improved safety performance and operation of three companies: Optasense, Stingray Geophysical and Schlumberger. Each of these companies have established highly competitive positions in the worldwide optical sensor market and collectively employ more than 160 people in the south of England, in their distributed sensing programmes having benefitted from the adoption of this new technology that contributes to the management of environmental risks and hazards.
Covesion, the company spun out of the University of Southampton's research into materials for use in high-powered lasers, has grown into a multi-million pound business that has created high-technology jobs, attracted more than £1 million in US investment and won UK export orders around the world. Covesion's nonlinear crystals are used by the world's leading companies and research institutes in cutting edge applications that include fibre lasers, medical imaging, aircraft anti-missile defences, display projectors and the remote sensing of airborne hazardous materials. The global value of Covesion-enabled operations since the company's inception in 2009 is estimated to be in excess of US$100 million.
Photonic crystal fibres are a new form of optical fibre developed at the University of Bath from 1996 to the present. Our work has led to the creation of new companies, new business sectors for established companies and stock products for large component suppliers. Our key patents (now sold) continue to dominate technological developments. The estimated annual world market for photonic crystal fibre is between $35M and $70M. Users include industries and academic institutions involved in physical and biomedical imaging, microscopy, spectroscopy, sensing, metrology and laser gyroscopes.
Covesion, a company that was spun out of the University of Southampton, focuses on research and development of high-value engineered nonlinear crystal materials, that find widespread use in the laser, defence and display sectors. The impacts of their work fall under the headings of economic, via job creation and investment, health, through application of their products in medical imaging, and the environment, via detection of airborne pollutants and remote sensing. The company is now a multi-million pound business that has attracted more than £1m in US investment and won UK export orders around the world. The global value of Covesion-enabled commerce since the company's inception in 2009 is estimated to be in excess of US$100m.