Log in
Workers at the University of Leeds researched, then developed and patented the `hot compaction' process for the manufacture of single polymer composites [1]. In this process highly oriented polymer fibres are heated so that a proportion of the surface of every oriented element melts. Upon cooling, this skin recrystallises to form the matrix of a self-reinforced fibre composite. Important resultant properties include high stiffness and strength, lightweight and outstanding impact strength, leading to a material with crucial commercial advantage. The reach of this impact is demonstrated by commercialisation of the polymer composite over a wide range of applications including anti-ballistic body armour, sports goods (Nike, Bauer), lightweight luggage (Samsonite), audio speakers (Wharfedale) and radar covers for helicopters (Westland). Examples include Samsonite using the material Curv® to manufacture two new high profile product ranges (Cosmolite and Cubelite) and Bauer using it in their elite-level ice hockey skate range (SUPREME and VAPOR).
Research at the University of Manchester has supported the development of drinks vending systems for Mars Drinks. The research has demonstrated that a detailed understanding of the relationship between the structure and properties of the polymeric components is vital for the design and performance of two drinks vending systems, Flavia (single-portion fresh beverages) and Klix (in-cup beverages). This research has contributed to major improvements in materials selection, quality control, cost reduction and performance. These drinks vending systems were developed originally in the UK in collaboration with the University of Manchester, with Flavia now also manufactured in the USA and marketed worldwide by Mars Drinks with an estimated sales value of > US$400m per annum.
Research into die drawing of polymers at Bradford has resulted in a new building material that is stronger and more durable than wood; and new bioresorbable shape-memory polymers for use in medical implants that reduce patient trauma and costs. The wood replacement material is commercialised by the United Forest Products/Dow USA 2010 spin out company Eovations LLC for use in a range of construction applications; the bioresorbable shape-memory polymers have recently been patented (4 patents filed) by Smith & Nephew for use in soft tissue fixations. These impacts form part of a range of exploitations of our oriented polymer technology.
A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.
The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.
The unique application of combinatorial chemistry in materials science at Southampton has directly underpinned the success of University spin-out, Ilika Technologies. Since 2008, the breadth of applications of the research has allowed Ilika:
Between 2008 and 2012, Ilika enjoyed considerable growth, doubling employment to 35 staff, increasing turnover by approximately 25% annually, and floating on the AIM with a market capitalisation of £18.7 million.
Research carried out by Prof. Ton Peijs and colleagues has led to significant breakthroughs in engineering plastics: PURE® and its licensed Tegris® technology, which are lightweight self- reinforced alternatives to traditional polypropylene (PP) composites such as glass-fibre or natural- fibre-reinforced PP. Environmentally friendly and 100% recyclable, these strong and ultra-light self- reinforced plastics have been successfully used across a number of applications, from suitcases and sports gear to protective armour and automotive panels, with impressive results. When used for car, truck and van components, they have been shown to help lower exhaust emission levels and increase fuel economy.
Initial research into polymer nanocomposites and their formation took place at Strathclyde from 2000 - 2010. This was followed by a collaboration with the world's largest manufacturer of composite kitchen sinks, Carron Phoenix Limited, through a 6-year Knowledge Transfer Partnership (KTP) which resulted in a successful new production process of its high-end synthetic granite kitchen sinks. This led to £4 million of capital investment in new production facilities at their Falkirk site, enabling the company to sustain its leading position in the designer kitchen sink market and retain its workforce of over 400 employees in central Scotland, including the 170 workers in the composite sink division in Falkirk. Within the REF period, the research has led to the manufacture and sale of in excess of one million kitchen sinks, generating sales revenue in excess of over £50M and supporting the UK economy.
We developed technology that uses polymer particles to replace much of the water that is employed in conventional clothes washing. The innovative technology is protected by several international patents and was commercialised in 2006 via the spin-out company Xeros Ltd. In August 2012, Xeros sold its first commercial-scale (25kg capacity) machine in the UK high street market and also installed the commercial-scale machine at a US commercial laundry, enabling typical savings of upto 70% less water, 50% less chemicals and 50% less energy than traditional methods and, hence, significantly reduced carbon footprint; Xeros plans to introduce a domestic-scale washing machine in 2014.
Electrical power companies are tasked with operating a highly reliable and robust power system. Electrical power outages (blackouts) have serious consequences for the companies concerned as well as society. The health of electrical insulating materials is critical for the reliability of these systems as it often determines equipment lifetime.
Leicester was the first to demonstrate experimentally that polymer based nanocomposite materials could increase the service life and reliability of electrical insulation as used in high voltage power transmission systems. Its research has also led to the development of measurement techniques to assess the health and the extent of thermal ageing of HV power cables.
National Grid has used Leicester's research findings to manage and monitor its electricity transmission equipment, with resulting impacts on its safety, efficiency and financial economy. Borealis, a major international supplier of insulating materials has used the research to solve manufacturing problems and to set up test facilities for medium voltage cables. A Knowledge Transfer Partnership with Alstom Grid has led to the the establishment of a £1M commercial size HVDC cable test facility which has attracted £0.5M investment from cable manufacturers worldwide.