Log in
Over the past two decades, researchers at the Institute for the Environment (hereafter, the Institute) at Brunel University have generated substantive evidence supporting the case for regulation of discharges of pharmaceuticals into rivers and estuaries throughout Europe and for improved sewage treatment, with significant implications for water quality, aquatic life and public confidence. Their research has led to improved sewage treatment in some countries and to changes in the European Water Framework Directive (WFD; the primary legislation for protecting and conserving European water bodies), such that regulatory limits for environmental concentrations of the contraceptive pill hormones, ethinylestradiol and oestradiol, are now included in River Basin Management Plans for 2015. In 2011, a Queen's Anniversary Trust Prize was awarded to Brunel University in recognition of the Institute's considerable success in translating this research into European policy, also influencing countries outside Europe.
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) are essential nutrients and have many beneficial effects on human health. Fish are the major source of omega-3 LC-PUFA in the human diet, and its level was maintained in farmed fish through the use of fish oil as a major component of extruded aquafeeds. Around 10 years ago it became clear that demand for fish oil would rapidly outstrip supply, limiting expansion of aquaculture activities, if fish oil use was not reduced. The challenge this presented was that alternatives to fish oil lack omega-3 LC-PUFA. However, replacement of fish oil with more sustainable alternatives is now standard practice in the industry. Research into fish oil replacement and omega-3 metabolism in the Nutrition Group, Institute of Aquaculture has been at the forefront of the scientific research in the UK and Europe that has ensured nutritional quality of farmed fish by developing alternative feed ingredients and feeding strategies that have maintained levels of omega-3 LC-PUFA despite radical changes to feed composition driven by sustainability and food security. This work culminated with recent demonstrations that farmed salmon can be net producers of marine protein (2010) and oil (2011).
This case study concerns the impact of Plymouth University research relating to farmed fish diets, which led to changes to EU legislation with respect to two types of ingredients: animal proteins and probiotics. The impact of the reintroduction of certain animal proteins in farmed fish feeds (previously banned to protect human health) and to the authorization of a probiotic as a feed additive, involved industry investment in research, have reduced the environmental impact of farmed fishing, improved competitiveness, enhanced yield and quality and improved fish health and survival.
Tilapia, an important farmed fish is of fundamental importance to the food security of poor people in less developed countries, and ensuring high quality juveniles are available locally is critical. Stirling's Sustainable Aquaculture group have been instrumental in developing a novel decentralised approach to sustainable tilapia farming which has now been piloted and scaled up in NW Bangladesh (NWB). This work has improved the availability of high quality seed and more efficient and productive food fish. This has led to seasonal income smoothing and elevated household nutrition among the targeted poorer households producing the juveniles, as well as reduced costs and use of agrochemicals in associated rice production. Landless people have also benefitted through trading fish in targeted areas and further afield.
Between 1987 and 2011, the Fish group at Imperial College London assisted the Falkland Islands Government by providing fisheries management advice as well as delivering seasonal licencing and fee analyses which determined the number and type of fishing licences allocated to commercial vessels operating in Falkland waters. The work of the Fish group had unprecedented economic, commercial and environmental impacts on the Falkland Islands, where between 50% and 75% of the annual revenue required to fund all infrastructure, research and development in the Islands is generated by the £20M income from the sale of commercial fishing licences. In 2006, the Falkland Islands changed from a seasonal fishing licensing system to a rights-based management system of Individual Transferrable Quotas (ITQs) for fishing companies. The move to ITQs, which was recommended by the Fish Group, generated revenue of £9.5 million in 2010 and the system will remain in place until 2031. During a transition period between 2008 and 2011, the Fish Group supported the planned hand-over of licencing and fee responsibilities to the Falkland Island Fisheries Department which continues to use the bio-economic and stock assessment models developed by the Fish Group at Imperial for the sustainable management of marine resources.
Since 2008, the School of Environment & Life Sciences at the University of Salford has expanded its research in the field of population and conservation genetics, focusing on the application of molecular genetics and evolutionary theory on supporting the management of exploited living resources and conservation of endangered species and ecosystems. Molecular Ecology and Conservation demonstrates the following impact:
Increasing consumer awareness of the environmental implications of food choices, improving consumer confidence and food management policy, supporting environmental management and biodiversity, and guiding international conservation policy and management processes.
Research on the environmental safety and toxicity of nanomaterials in fishes has had a global impact across both government and industry contributing to:
(i) Consensus building on biological effects allowing regulatory agencies/governments to make proper decisions on the hazard of nanomaterials to farmed fish and wildlife.
(ii) Critical evaluation of the internationally agreed process of toxicity testing to determine whether the current legislative test methods are fit for purpose and acceptable to the aquaculture industry.
(iii) Identification of national/international research priorities and policies via work with the OECD and the US Government.
(iv) Influencing government policy to support training and information for industry.
This research programme has provided convincing evidence that fish perceive pain and has been instrumental in directly informing changes to experimental protocols and influencing welfare guidelines.
We use fish in a variety of ways — for food, farming, experimentation, as public exhibits, in recreational angling and as pets. Many of the procedures that fish are subjected to cause tissue damage that would give rise to the sensation of pain in mammals. This research programme uses techniques in neurobiology, physiology and animal behaviour to discover how the fish are affected by these procedures. This has not only improved the welfare of fish, but also influenced how the public views these animals through media dissemination.
Research at the University of Southampton into the behaviour of fish at dams has led to the improved design and positioning of screens to prevent economically important and endangered fish from being killed in turbines, as well as enabling them to pass barriers more successfully through improved fish passes. The research has informed practical changes to river infrastructure in the UK, Sweden, the USA, and China. It also led to development of methodologies for river restoration and planning which have aided the implementation of new conservation legislation, and quantification of the environmental impacts of beaver dams on fisheries.
Disease severely limits the expansion of aquaculture. Studies on the immune control of infection have led, in association with industry, to the promotion of disease control utilising 03b2-glucan feed supplements. Knowledge has, via Keele Water, informed infection control strategies used by UK fish farmers. Studies have provided a legacy of young scientists trained by industry and supported by European funding. Advances made have been embraced in the education of veterinarians in Germany and fish production in Eastern Europe. Close collaboration with government bodies and learned societies has ensured that the work has been recognised by policy makers within the fisheries sector.