Similar case studies

REF impact found 55 Case Studies

Currently displayed text from case study:

Elucidating the genetics of deafness leads to better diagnosis and clinical services

Summary of the impact

Our research has had impact on the activities of practitioners and their services, health and welfare of patients, on society and on public policy. New diagnostic tests for genetic deafness have been introduced, and healthcare guidelines and professional standards adopted through our investigation of the aetiology of childhood-onset hearing loss. Disease prevention has been achieved by our research on antibiotic-associated deafness, public awareness of risk to health and hearing has been raised, and we have increased public engagement through debate on scientific and social issues. We have also influenced public policy on ethics of genetic testing for deafness with our research resulting in improved quality, accessibility and acceptability of genetic services among many hard-to-reach groups (deafblind, culturally Deaf, and the Bangladeshi population of East London).

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Clinical Sciences, Neurosciences

Improving the diagnosis and understanding of Batten Disease

Summary of the impact

Research at UCL into the genetics of neuronal ceroid lipofuscinoses (NCL) — also known as Batten Disease - has had a global impact on the diagnosis and understanding of this group of diseases. The identification of genes and mutations has led to new diagnostic tests, which inform clinical management in terms of expected disease course and choice of the most effective drugs; prenatal and pre-implantation diagnoses for prevention are also possible. The group has established a new classification of diseases according to gene-based nomenclature. Information about all genes that underlie NCL has been collated in the NCL Mutation Database, which is freely available on the NCL Resource website. The group has also engaged closely with professionals and affected families to maximise the reach and understanding of research.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences, Oncology and Carcinogenesis

Molecular genetic characterisation of human and animal disorders leading to improved diagnosis, prevention and treatment of inherited disorders

Summary of the impact

Research at the UCL School of Pharmacy has positively influenced healthcare in startle disease/hyperekplexia, a rare disease that affects humans and several animal species, including dogs, horses and cattle. The identification and functional characterisation of mutations in genes involved in human startle disease by researchers at the School has improved genetic diagnostics and patient care. Our research on startle disease in cattle and dogs has also led to new non- invasive diagnostic tests that have alleviated animal suffering and reduced negative economic impacts on farmers. Overall, our findings have been translated into tangible benefits for the human and animal populations affected by this disease and have changed the way in which the disease is diagnosed and treated. We have also significantly increased the awareness of this rare disorder by communicating with academics, healthcare and veterinary professionals, and the general public.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Monogenetic Diseases

Summary of the impact

Research at the Centre for Cutaneous Research at Queen Mary has led to gene discovery and molecular diagnosis for a number of single gene skin disorders and associated syndromes including hearing loss, inflammatory bowel disease, cardiomyopathy and oesophageal cancer. It has identified GJB2 mutations (encoding Cx26) as major cause of genetic hearing loss (20-50% of all cases) and ABCA12 mutations with the (often fatal) recessive skin condition Harlequin Ichthyosis. Impacts include: 1) increased medical and scientific awareness/knowledge of the inherited basis of these conditions, 2) changes in clinical practice and molecular diagnosis, 3) improved information for patients, parents and the public.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

New gene mapping tools

Summary of the impact

Research carried out by the University of Southampton into the genetic causes of diseases, and the gene mapping techniques and applications derived from this research, has benefited patients worldwide through improved prediction, diagnosis and treatment for common diseases with a complex genetic basis. A particularly striking example is age-related macular degeneration which is a common cause of blindness. Commercially, the research provides cost-effective strategies for genotyping DNA samples, and marker-based selection strategies for economically relevant animal species, such as cattle. The work underpins the development of the personal genomics industry, which specialises in individual genetic risk profiling.

Submitting Institution

University of Southampton

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics

Parkinson's disease: new DNA diagnostics

Summary of the impact

Research into the genetic causes of Parkinson's disease by Professor Nick Wood's group at the UCL Department of Molecular Neuroscience, describing the mutations in the gene LRRK2, have led to the development of a new genetic test which is now available to patients and their families. This benefits them by providing a precise diagnosis, and an understanding of the risk of disease to relatives. The research has provided new insight into patterns of Parkinson's disease in particular ethnic groups, and given rise to improved public understanding and high profile philanthropy. This discovery has also opened up a new area of research into disease-modifying treatments in Parkinson's disease within the pharmaceutical industry, leading to new drug candidates.

Submitting Institution

University College London

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Improving diagnosis and clinical care for rare inherited diabetes syndromes

Summary of the impact

Although individually infrequent, rare diseases collectively are a major health burden, particularly for individuals who suffer with conditions that are not routinely diagnosed or have no effective care pathways. Through the work of Professor Tim Barrett, the University of Birmingham is internationally recognised for translational research in rare inherited diabetes and obesity syndromes. This has had major impacts on patient care through gene identification for devastating multi-system syndromes; development of a unique international diagnostic testing service combining molecular testing with international clinical expertise; European reference centre status for three NHS highly specialised multidisciplinary services; and leadership of the European Registry for rare diabetes syndromes. Our national and international leadership for these previously poorly-served conditions has enabled sharing of best clinical practice, including development of clinics for Wolfram syndrome across the world.

Submitting Institution

University of Birmingham

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

UOA01-14: Defining Craniofacial Disorders for Improved Clinical Management

Summary of the impact

As a result of research from Oxford's Professor Andrew Wilkie, accurate genetic diagnostic tests are now available for over 23% of all craniosynostosis cases nationally and internationally, leading to improved family planning and clinical management of this common condition worldwide. The premature fusion of cranial sutures, known as craniosynostosis, is a common developmental abnormality that occurs in 1 in 2,500 births. Over the past 20 years, the University of Oxford's Clinical Genetics Lab, led by Professor Wilkie in collaboration with the Oxford Craniofacial Unit, has identified more than half of the known genetic mutations that cause craniosynostosis and other malformations of the skull.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Clinical and genetic characterisation of inherited forms of heart muscle disease and the impact on service provision and patient care

Summary of the impact

Over the past decade our research findings have impacted on the diagnosis and treatment of patients with inherited cardiomyopathies. Our work on risk stratification in patients with hypertrophic cardiomyopathy forms the basis for international guidelines on the use of implantable cardioverter defibrillators. Our research in patients with arrhythmogenic right ventricular cardiomyopathy has led to the development of a new international standard for the diagnosis of disease in patients and relatives. We have contributed to national and European guidelines on genetic testing in these conditions. We have also been influential in changing national policies, service design, and provision of care for inherited heart muscle disease.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Neurosciences

G: Diagnosis from gene discovery – developmental disorders of eye, brain, nerve and skeleton

Summary of the impact

Impact: Health and welfare; policy and guidelines; public engagement. The identification of >20 genes linked to human developmental and childhood degenerative disorders.

Significance: Definitive diagnosis is essential for genetic counselling, prenatal screening and postnatal management.

Beneficiaries: People with developmental disorders and their families, prospective parents, the NHS and healthcare delivery organisations; public understanding of genetic disorders.

Attribution: Researchers from UoE identified/characterised all the genes described, and their mutation in disease.

Reach: Worldwide: these developmental disorders affect thousands of people. Genetic tests established as a result of the research are provided for people from 35 countries on all continents.

Submitting Institution

University of Edinburgh

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Filter Impact Case Studies

Download Impact Case Studies