Log in
Professor Wright has developed practical scheduling implementations for sports fixtures and officials, with regular clients at both professional and amateur level in the UK and abroad, including the England and Wales Cricket Board and the New Zealand Rugby Union. His expertise also supports `what if' exercises, enabling clients to experiment with new ideas and announce changes with confidence that they will work in practice. His work has resulted in financial gains, substantial savings in skilled administrative time and high satisfaction for stakeholders. His research has potential reach across numerous sports, at all levels across the world.
Many operations in daily life, from manufacturing to running a hospital, need to optimise the return on use of resources where volume and value are conditions. Scheduling theory tackles some of the hardest practical optimisation problems, not known to be solvable in reasonable computation time. Strusevich and Kellerer have been able to reformulate practical scheduling challenges as `knapsack problems' - dealing with volume and value constraints - and then design approximation algorithms which can be applied back to the original challenge. The work has attracted EPSRC funding, stimulated a new field of research which is developing fast, been widely published, led to presentations at international conferences including the 2009 Computers and Industrial Engineering conference attended by industry practitioners and is impacting on Combinatorial Optimisation research.
Transport crew scheduling research at Leeds University since 1994 produced optimising algorithms and industry-ready software that led to the spinning out of Tracsis in 2004. The software, including upgrades, is used by over 40 bus and train companies who previously relied on manual processes. A minimum estimate of a £230 million saving in crew costs has been achieved in the UK alone over 2008-31.7.2013. Since 2008, the software has been routinely used by bidders in all UK rail franchise tenders, contributing to cost effective, efficient and reliable rail transport. Success led to the Tracsis floatation in November 2007 (market capitalisation: £46.7 million on 22/5/2013).
Through close collaboration with scientists at the European Space Agency (ESA), research at the University of Southampton has developed new algorithms and an associated software tool that have contributed to more efficient spacecraft design. Now a standard component of the ESA's design technology, the tools have doubled the speed in which crucial design processes can be completed, resulting in increased efficiency over the REF period of 20 person-years — equivalent to €1 million in monetary terms — and maintaining the ESA's manufacturing competitiveness. The success of this work led to a €480,000 EU grant to adapt the tools for the avionics industry as part of efforts to meet ambitious environmental targets under the EU Clean Sky Initiative.
This case study reports the development of a new approach to solving full field reservoir problems with inhomogeneous and anisotropic permeability and variable reservoir This comprehensive body of work arose from discussions between scientists at the Schlumberger Technology Centre, Abingdon, and the internationally recognised Nonlinear Waves group in the School of Mathematics, and has been supported under two contracts with Schlumberger Oilfield UK PLC through their Technology Centre in Abingdon UK. The work has provided Schlumberger with a fast, robust and efficient tool for the rapid assessment of optimisation problems relating to oil well location sites in new oil reservoirs, and has been implemented in their recently developed GREAT facility for reservoir estimation and analysis. Schlumberger PLC is an international company which plays a premier role in supplying the petrochemical industry with services such as seismic acquisition and processing, well testing and directional drilling, flow assurance and extraction strategy. The work described in this case study took place from 2007 to 2011, and involved D J Needham (University of Birmingham) and S Langdon (University of Reading).
Research on designing mathematical methods for optimisation carried out at the University of Southampton has been fundamental to the development of software solutions for transportation problems and has directly led to the growth and commercial success of the niche software company, Logical Transport. Additional beneficiaries are local councils — who have obtained school bus schedules that typically reduced the number of required vehicles by 10-20% and miles driven by 12-15% and have an information management tool for better decision making — and passengers who have experienced improved service quality.
Algorithms developed by University of Glasgow researchers have helped NHS Blood and Transplant (NHSBT) tackle the complex problem of increasing the number of kidney transplants in the UK. For people with end-stage renal failure, the most effective form of treatment is transplantation. Dr David Manlove's research team have developed sophisticated algorithms which allow the NHS to help patients who require a kidney transplant, and who have a willing but incompatible donor, to exchange their donor with that of another patient in a similar position, in what is known as a paired exchange. By optimising kidney exchanges, University of Glasgow research has increased the number of transplants from paired donation by 40% between 2008 and 2013, when measured in comparison with the number of transplants that would have been possible with previous pairing techniques. Dr Manlove's work with NHSBT has translated not only into increased quality of life for patients freed from long term dialysis but will also afford the NHS an estimated £16 million of savings over the next 10 years.
Inverse kinematics mathematics developed at Surrey for satellite control is being commercialised for motion capture, film animation and for real-time animation in computer games through IKinema, a University of Surrey spin-out company. Ikinema is the most advanced full-body IK solver and has been used in films such as X-men First Class and Wrath of the Titans 2; it is embedded in Luxology's modo-601, and is used by major film studios including 20th Century Fox, Disney, Lucas Film, ILM, and visual effects specialists and game developers such as Framestore, Square Enix, and AudioMotion. IKinema currently employs 6 staff and is profitable, with 80% of sales revenues generated by export.
Research by Gondzio (Maxwell Institute) on algorithms for large-scale optimization has led to major advances in the design of interior point methods (IPMs). The advances include new ways of exploiting centrality (1996-2008) as well as special preconditioning (2004) and warmstarting (2003, 2008) techniques. These techniques make it possible to solve more difficult optimization problems more quickly. Some of these have been implemented by all major commercial providers of optimization software including IBM, Gurobi, Mosek and FICO. The techniques have therefore had an economic impact on these companies and on thousands of their customers worldwide who now benefit from faster, more reliable methods to solve their challenging optimization tasks.
This case study demonstrates the benefits achieved when the mathematical and computational aspects of a computational fluid dynamics (CFD) problem were brought together to work on real-world aerodynamic applications. While earlier insight on the solution reconstruction problem was purely based on empirical intuition, research in the School of Mathematics at the University of Birmingham by Dr Natalia Petrovskaya has resulted in the development of the necessary synthetic judgement in which the importance of accurate reconstruction on unstructured grids has been fully recognised by the CFD researchers at the Boeing Company. Boeing has confirmed that the research has led to substantial resultant improvements in their products as well as gains in engineering productivity. For instance, wing body fairing and winglets optimization for the Boeing 787 has been done by means of CFD only. Implementation of CFD in the design of their new aircraft allowed Boeing to reduce the testing time in the wind tunnel for the 787 aircraft by 30% in comparison with testing carried out for Boeing 777. Efficient use of CFD in the design of new aircrafts has helped the Boeing Company to further strengthen their core operations, improve their execution and competitiveness and leverage their international advantage.