Similar case studies

REF impact found 29 Case Studies

Currently displayed text from case study:

Ultra-precision machining: improved competitiveness of UK manufacturing

Summary of the impact

Cranfield's research into ultra-precision machining and production science has led to new production machines, and to commercial availability of advanced optical surfaces, at a level of accuracy previously impossible. Cranfield's industrial clients have won contracts for advanced surface production worth >£5 million in under five years. Cranfield made:

  • more mirror surfaces of NASA's James Webb Space Telescope than any other organisation;
  • the exceptionally accurate surfaces that are redefining the value of the kelvin through determination of the Boltzmann constant for the National Physical Laboratory.

Submitting Institution

Cranfield University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Manufacturing Engineering, Materials Engineering

Ultra-precision Micro Milling for High Value Manufacturing

Summary of the impact

The UltraMill machine was developed at Brunel University in 2008, in collaboration with Ultra Precision Motion (UPM) Ltd, to help support UK and European manufacturing SMEs in high value manufacturing sectors, particularly in ultra-precision and micro manufacturing. The machine has a novel design and the sub-systems and machine elements have a number of technological innovations. Two international patents have been granted to protect the IP within the machine. A surface roughness of 4-6 nm was micro-milled on non-ferrous metal components by the UltraMill in 2008, which at the time was the finest engineering surface achieved by ultra-precision micro-milling in the world.

A licence agreement was signed with ITP Group (UK) in 2012 for the commercial production of the UltraMill. This was ITP's first entry into the high-precision milling market. ITP realigned their production systems to begin manufacturing the UltraMill in late 2012 and have manufactured 3 machines to date.

Contour Fine Tooling, which leads the worldwide market in the field of diamond cutting tools, was inspired by the UltraMill, and developed the first diamond micro-milling tool in the world. The UltraMill was used to test the tool's capabilities and feasibility; the new tool has since been successfully sold. It is now being used to manufacture a number of high-value products. In particular it is used by Apple to produce the bevelled edges of the iPhone 5S. Apple currently manufactures 150,000 iPhone 5S units per day.

Submitting Institution

Brunel University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

Multiple industrial applications of a precision diamond machining facility developed for Astronomical Instrumentation (Precision Optics)

Summary of the impact

A facility for precision diamond machining of optical components arose from research at Durham University to produce instruments for large telescopes, including NASA's James Webb Space telescope. This now provides a specialist service to industry, with contracts worth over £2.0M from >20 companies over the past 5 years. The users span applications including ophthalmics, automotive optics, microstructures for backlit displays and IR optics. An emerging application is the use of high precision machine metal moulds to reproduce ophthalmic lenses for spectacles. Examples include PixelOptics (USA) who make high-end electronically corrective eyewear, which has won several ophthalmic industry R&D awards, and Eyejusters (UK), which employs complex surface slide lens technology to provide low cost spectacles aimed at improving the lives of people in the developing world.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Technology: Communications Technologies

Advanced machine tool accuracy measurement and improvement

Summary of the impact

Research by the University of Huddersfield has produced an in-depth understanding of the factors that contribute to machine tool inaccuracy. This has led to predictive methods for assessing the capability of machines to produce specific components and the development of a low-cost electronic compensation system that can increase machine tool accuracy by a factor of 10, with significant cost savings for factory temperature control. A contract has been signed to market this system globally. Rapid calibration techniques have been developed, in collaboration with a UK world-leading aerospace manufacturer, reducing timescales from days to less than one hour.

Submitting Institution

University of Huddersfield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Manufacturing Engineering

The Development of World Leading Surface Metrology Software

Summary of the impact

University of Huddersfield research into surface metrology, carried out as part of the EU-funded SURFSTAND project, has led to worldwide changes in manufacturing. Nine ISO standards related to measuring the surface roughness of parts have been developed as a result, influencing practices in sectors ranging from aerospace and automotive engineering to microelectronics and bio-implant production. Consequently, all quantitative 3D surface measurement carried out in the world now draws on the research. Instrument manufacturers and the National Physical Laboratory have also implemented the standards, while software developed as part of the research has been incorporated by a leading industrial partner, significantly enhancing the company's offering and market position.

Submitting Institution

University of Huddersfield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

Ultra scale-down technologies for speeding routes to bioprocess manufacture

Summary of the impact

UCL's creation of ultra scale-down (USD) technologies has led to economic benefits by speeding to manufacture next-generation healthcare products. This has resulted in documented savings for pharmaceutical companies in pilot-scale studies (eg ~£280k for a protein therapy) and in manufacturing cost-of-goods (eg ~£200k pa for an antibody). Licensing values realised for USD-facilitated manufacturing processes range from a £10m early-stage payment for an antibody therapy [text removed for publication] to US$1bn for a therapeutic vaccine.

Since 2008 some 40 companies have used UCL USD technologies, which have now also facilitated the formation of a spin-out company and additional job creation. Patient benefits have emerged through the contribution of USD to better bioprocess definition, with USD technologies now helping deliver the US Food and Drug Administration's Quality by Design initiative for biopharmaceuticals, valued at more than US$20bn a year through a 25% reduction in time-to-market and more robust manufacture.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Medical and Health Sciences: Neurosciences

Enabling SEMATECH and industrial member companies to improve their transistor technology

Summary of the impact

Researchers within the Department of Physics and Astronomy at UCL have investigated the properties of defects in bulk HfO2 and at Si/SiOx/HfO2 interfaces. Results have been used by an industrial partner, SEMATECH (SMT), to improve the quality and reliability of high-performance microelectronic devices based on transistors. This has helped SMT to meet project objectives on behalf of member companies such as Intel and IBM, and UCL research results have been consistently highly evaluated by these companies. Recommendations made by SMT have been implemented by industrial partners in their currently manufactured devices, such as the 22nm process technology released by Intel in 2011.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

SmartPoint: dramatically reducing the failure rate of root canal treatments in orthodontistry

Summary of the impact

A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Health

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering, Interdisciplinary Engineering

Biocatalysis integrated with chemistry and engineering to speed development of green pharmaceutical processes (BiCE programme)

Summary of the impact

UCL research has been instrumental in creating critically needed new biocatalysts and bioprocess technologies for industrial biocatalytic process development. These have impact across the UK chemical and pharmaceutical sectors. BiCE enzyme technologies have been exploited through the formation of a spin-out company, Synthace, generating investment of £1.8m and creation of 7 new jobs. Commercial utilisation of BiCE enzymes by company partners has led to environmental benefits through sustainable syntheses and reduced waste generation. BiCE high-throughput bioprocess technologies have also been adopted to speed biocatalytic process development. UCL established a parallel miniature stirred bioreactor system as a new product line for HEL Ltd. [text removed for publication]. Related knowledge transfer activities have also benefited some 157 industrial employees from over 50 companies since 2008.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Physical Chemistry (incl. Structural)

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Filter Impact Case Studies

Download Impact Case Studies