Log in
Exceptional rainfall in June 2007 lead to widespread flood damage in the UK; Hull was particularly badly affected with 8600 houses and 1300 businesses flooded, the closure of schools and cancellation of many events. At the instigation of the City Council, Hull University geographers produced two influential reports that explained how and why the flooding happened and what might be done to improve flood readiness for the future.
The reports had impact at a national scale. They fed into the findings of the House of Commons Select Committee on Environment, Food and Rural Affairs (published 7 May 2008) and the Pitt Report (a Government Independent Review, published 25 June 2008), which were both tasked with addressing the summer 2007 floods. Significant elements of `The Flood and Water Management Act' (2010), which was enacted subsequently, were informed by our research.
The reports also impacted at the regional scale. Their findings were adopted by Hull City Council, the Environment Agency and Yorkshire Water. Therefore, our research also shaped several practical strategies to improve flood prevention policies and minimise danger, damage, distress and expense in future floods.
Thorne's research for the Flood Foresight project changed UK policy towards sustainable Integrated Flood Risk Management (IFRM), as implemented by the Floods and Water Management Act (2010). This legislation introduced new systems of governance to clarify responsibilities, support co-ordinated actions, strengthen the roles of local stakeholders, foster the co-production of knowledge, and work with natural processes. Flood Foresight has attracted international attention and stimulated projects and policy changes elsewhere, including in the Taihu Basin in China and around the city of Gold Coast in Queensland, Australia.
The Hydro-environmental Research Centre (HRC) at Cardiff University has developed a widely used hydro-environmental numerical model, called DIVAST (Depth Integrated Velocities And Solute Transport). DIVAST addresses the need for more accurate models to predict flood risk and water quality levels for a range of extreme events. The model has been implemented in commercial codes, marketed by CH2M HILL (previously Halcrow), and used in design studies, for example, undertaken by Buro Happold. The impacts of the research are marked environmental, health, economic and industrial benefits. It is used by major organisations around the world on large-scale projects and, in particular, for mitigation planning against national and international risks associated with floods and water quality.
A two-dimensional flood inundation model called LISFLOOD-FP, which was created by a team led by Professor Paul Bates at the University of Bristol, has served as a blueprint for the flood risk management industry in the UK and many other countries. The documentation and published research for the original model, developed in 1999, and the subsequent improvements made in over a decade of research, have been integrated into clones of LISFLOOD-FP that have been produced by numerous risk management consultancies. This has not only saved commercial code developers' time but also improved the predictive capability of models used in a multimillion pound global industry that affects tens of millions of people annually. Between 2008 and 2013, clones of LISFLOOD-FP have been used to: i) develop national flood risk products for countries around the world; ii) facilitate the pricing of flood re-insurance contracts in a number of territories worldwide; and iii) undertake numerous individual flood inundation mapping studies in the UK and overseas. In the UK alone, risk assessments from LISFLOOD-FP clones are used in the Environment Agency's Flood Map (accessed on average 300,000 times a month by 50,000 unique browsers), in every property legal search, in every planning application assessment and in the pricing of the majority of flood re-insurance contracts. This has led to more informed and, hence, better flood risk management. A shareware version of the code has been available on the University of Bristol website since December 2010. As of September 2013, the shareware had received over 312 unique downloads from 54 different countries.
Throughout the REF period our research - driven by risk assessment theory - has provided a continuously updated set of unique models, data and techniques for assessing the benefits of UK flood alleviation investment. These have been used to justify all flood alleviation investment for the whole of the UK for the whole of the REF period (c. £3bn), as well as for the previous 30 years. Our work has been central to all assessments by Defra and the Environment Agency (EA) of national flood risk (Foresight; NaFRA (England, Wales, and Scotland); LTIS) and all the Catchment Flood Management Plans for England and Wales. The research is also used in Scotland (by the Scottish Environmental Protection Agency, SEPA), by international and national insurers (e.g. through Risk Management Solutions Ltd), and in many other countries.
The UK spends £400-500M per year on flood defence infrastructure with 2 million properties exposed to the risk of flooding. Lancaster's research on extreme value methods is fundamental to optimising the design of this infrastructure to protect against coastal and river extreme events. This optimisation minimises costs without jeopardising the level of accepted risk and hence has financial and societal benefits. These methods are the fundamental component in:
Research by Professor John Thuburn and his group at the University of Exeter has made several key contributions to the formulation and development of ENDGame, the new dynamical core of the Met Office weather and climate prediction model. ENDGame has been shown to deliver improved accuracy and better computational performance at high processor counts compared to the current operational dynamical core, directly impacting the technological tools available to the Met Office. These improvements will benefit users when ENDGame becomes operational in early 2014: the economic value to the UK of the weather forecasts produced by the Met Office has been estimated to be in excess of £600M pa, while climate change projections inform policy decisions on mitigation and adaptation with huge economic implications.