Similar case studies

REF impact found 21 Case Studies

Currently displayed text from case study:

A benchmark tool for high performance computing

Summary of the impact

This case study describes the development, application and commercialisation of an open source tool, BSMBench that enables supercomputer vendors and computing centres to benchmark their system's performance. It comprehensively informs the design and testing of new computing architectures well beyond other benchmarking tools on the market, such as Linpack.

The significance of our code is that, unlike other benchmarking tools, it interpolates from a communication- to a computation-dominated regime simply by varying the (physics) parameters in the code, thus providing a perfect benchmark suite to test the response of modern multi-CPU systems along this axis. The impact of this work has great reach: a start-up company, BSMbench Ltd, has been founded to develop and commercialise the software; adopters have included IBM - one of the giants of the supercomputer world (where it uncovered errors in their compilers); it has been deployed by Fujitsu to validate its systems, by HPC Wales, a multi-site, commercially focussed national computer centre and by Transtec, an HPC company employing over 150 staff; and tutorial articles about BSMBench have appeared in magazines such as Linux Format.

This software tool spawned from our research into "Beyond the Standard Model" (BSM) physics which aims to understand the Higgs mechanism in particle physics at a fundamental level. This involved simulating quantum field theories using bespoke code on some of the fastest supercomputers on the planet.

Submitting Institution

Swansea University

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

Impact of the HELIUM Code on UK Government Procurement and Provision of National High-Performance Computing Facility HECToR

Summary of the impact

The High Performance Computing (HPC) application code HELIUM, developed at Queen's University Belfast to assist the development of attosecond technology, has impacted on the provision of public services through guiding procurement and acceptance testing of the high-performance computer facility HECToR. This facility was funded by UK Government with a total expenditure of £113M during 2007 - 2013. The HELIUM code was used for procurement and acceptance testing for the initial HECToR service in 2007 (Phase 1, 11k cores), and its upgrades in 2009 (Phase 2a, 22k cores), 2010 (Phase 2b, 44k cores) and 2011 (Phase 3, 90k cores). The HELIUM code was particularly invaluable in demonstrating that the Phase 2b and Phase 3 systems perform correctly at pre-agreed performance levels, since this code can be adapted to run for several hours over >80k cores.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Theoretical and Computational Chemistry

Castep

Summary of the impact

CASTEP is a parameter-free and predictive quantum mechanical atomistic simulation code developed by Professor Payne in the Department of Physics at the University of Cambridge. CASTEP has been sold commercially by Accelrys since 1995, with more than 800 industrial customers using the package. As part of Accelrys' Materials Studio, it can be used by non-experts to determine a wide range of physical and chemical properties of materials. Companies can thus perform `virtual experiments' using CASTEP. As quantum mechanical simulations can be cheaper and more flexible than experiments, CASTEP invariably reduces costs and accelerates product development.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry, Theoretical and Computational Chemistry

Stimulating public engagement with physics through the LHC and discovery of the Higgs boson

Summary of the impact

The switch-on of the Large Hadron Collider (LHC) and the discovery of a Higgs boson have stimulated interest in science and engineering, and in physics in particular, on a scale unprecedented by any other single experiment. Since 2008, UCL researchers have received a marked increase in requests for media appearances and written contributions, public talks and discussions. Many of these requests are directly related to the LHC work. While the evidence is not complete, it seems very likely that this has been a significant factor in the improved level of applications to study physics at levels from GCSE to undergraduate degree. In addition, public engagement with, and understanding of, the process of how science works has benefited.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Improving quality assurance of a large software model through relative debugging.

Summary of the impact

As a result of collaborative commissioned research, the lead developers of a major atmospheric research and operational weather forecasting model have changed their approach to quality assuring model source code. Drawing directly on the research findings, the lead developer has taken the decision to adopt a new approach to the correction of inconsistencies and inefficiencies in source code and to alter the software build procedure to be followed by a large model development community. An additional impact, in the form of improved business competiveness, is felt by a British software and consultancy company, which has been able to enhance a key tool used in their quality assurance and platform migration work with a global client base.

Submitting Institution

Edge Hill University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computation Theory and Mathematics, Computer Software, Information Systems

Sharing and nurturing public excitement in science with the discovery of the Higgs boson

Summary of the impact

The discovery of the Higgs boson at the Large Hadron Collider (LHC) has been one of the biggest science stories in recent years. John Ellis of the KCL Physics Department has significantly enhanced the impact of this scientific breakthrough by engaging the general public around the world with the landmark scientific developments. Based on his original research on the Higgs boson and other aspects of LHC physics, and drawing on work of his colleagues, Ellis has given 76 outreach talks since April 2011 in the UK and in 24 other countries. He has participated in five cultural festivals, given a Youtube presentation with over 500,000 views, made many BBC appearances and given expert analysis and interviews to UK and international print and broadcast media. The reach of the impact is truly global with an audience estimated in the millions.

Submitting Institution

King's College London

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

PHYS05 - Materials modelling using ab-initio electronic structure calculations

Summary of the impact

A computer program, CASTEP, has been developed to use quantum mechanics to calculate the structure and properties of materials. The code is distributed commercially via Accelrys Inc. with sales, for example, in the automotive, electronics and pharmaceutical industries in excess of £1m per year since 1998, accelerating to over £2.5m per year recently and total sales (late 2012) exceeding $30m. Commercial applications include designing new battery materials and electrodes to improve the performance of electric cars (Toyota), integrating organic electronic materials for light-weight flexible displays (Sony), and developing new catalysts for hydrogen-powered fuel cells (Johnson-Matthey).

Submitting Institution

University of York

Unit of Assessment

Physics

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Theoretical and Computational Chemistry

Engaging the public with Physics: scientists for tomorrow’s world

Summary of the impact

The power of physics, from the largest to smallest scale, to capture the imagination is unrivalled. This has been used as a vehicle for engagement and education in a wide-ranging series of public-engagement activities over the period 2008-2013. These activities (over 130 outreach events per year) are closely linked to the full spectrum of the School's research. Here the focus is Astrophysics, Nuclear Physics and Particle Physics and is built around live events, hands-on demonstrations, educational software development, and media work. The activities have engaged young people through schools and family groups, with a broader cross section of the general public also reached. Birmingham's leadership is evidenced through its major role at each of the Royal Society Summer Exhibitions since 2011, the delivery of extensive national and regional activities supported by the IoP and the STFC, its extensive schools' programme and wide media exposure. The activities have communicated the significance of recent discoveries in physics and astronomy, showing how research, including by Birmingham scientists, has led to these.

Submitting Institution

University of Birmingham

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

String Theory and Particle Physics Reach a Contemporary Art Audience

Summary of the impact

Few scientists in the UK have done as much as Dr David Berman and Dr Ben Still to bring the latest ideas and results from string theory and particle physics research into the contemporary art world. In 2010, Berman established an artist-in-residence post at QMUL's Centre for Research in String Theory, with Turner Prize winner Grenville Davey the first artist to take up the residency. This collaboration led to Davey creating sculptural responses to the Centre's work on generalized geometry and the role of duality, which have been exhibited widely. Berman has also collaborated with conceptual artist Jordan Wolfson for a work at the Frieze Arts Fair, which won the prestigious Cartier Award in 2009. He has given talks at the Institute for Contemporary Art, the Royal College of Art, Tate Modern and the Core Gallery, and will be curating further exhibitions in 2014. Still has initiated award-winning collaborations with artists, creating diverse artworks that draw-on QMUL's experimental research on neutrino physics, which have been exhibited at numerous venues. This work has transformed the practice of artists and brought complex theories and conceptual ideas to audiences that may not have had much previous knowledge or interest in these areas. Attracting widespread media coverage in both the arts and science press, the work has encouraged greater public discourse around string theory and particle physics.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Physics

Summary Impact Type

Cultural

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Quantum Physics

Research on fundamental physics inspires, entertains and stimulates the public

Summary of the impact

Large numbers of the public have been inspired and delighted by Sussex research on high-profile fundamental physics, through media coverage and cultural interpretation of this work, but also by participating in the process and contributing directly to further discoveries. Sussex research contributions to high-profile fundamental research include the Higgs boson discovery, which has had a phenomenal impact around the world, and the ESA's missions, XMM-Newton and Herschel, which appeal to an enduring curiosity and wonder about the nature of the universe. Our research underpins the pioneering Galaxy Zoo Project, which has enabled unprecedented engagement, providing a direct benefit to >200,000 participants who are directly contributing to active research, through one of the most high-profile examples of `citizen science'. The cultural landscape has been enriched through, for example, a sell-out West-End theatre play and a music/art/science collaboration at a regional Arts Festival.

Submitting Institution

University of Sussex

Unit of Assessment

Physics

Summary Impact Type

Cultural

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Filter Impact Case Studies

Download Impact Case Studies