Similar case studies

REF impact found 35 Case Studies

Currently displayed text from case study:

UOA01-14: Defining Craniofacial Disorders for Improved Clinical Management

Summary of the impact

As a result of research from Oxford's Professor Andrew Wilkie, accurate genetic diagnostic tests are now available for over 23% of all craniosynostosis cases nationally and internationally, leading to improved family planning and clinical management of this common condition worldwide. The premature fusion of cranial sutures, known as craniosynostosis, is a common developmental abnormality that occurs in 1 in 2,500 births. Over the past 20 years, the University of Oxford's Clinical Genetics Lab, led by Professor Wilkie in collaboration with the Oxford Craniofacial Unit, has identified more than half of the known genetic mutations that cause craniosynostosis and other malformations of the skull.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Elucidating the genetics of deafness leads to better diagnosis and clinical services

Summary of the impact

Our research has had impact on the activities of practitioners and their services, health and welfare of patients, on society and on public policy. New diagnostic tests for genetic deafness have been introduced, and healthcare guidelines and professional standards adopted through our investigation of the aetiology of childhood-onset hearing loss. Disease prevention has been achieved by our research on antibiotic-associated deafness, public awareness of risk to health and hearing has been raised, and we have increased public engagement through debate on scientific and social issues. We have also influenced public policy on ethics of genetic testing for deafness with our research resulting in improved quality, accessibility and acceptability of genetic services among many hard-to-reach groups (deafblind, culturally Deaf, and the Bangladeshi population of East London).

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Clinical Sciences, Neurosciences

Identifying Patients with Rare Forms of Erythrocytosis

Summary of the impact

Diagnostic tests have been successfully developed for identification of the cause of erythrocytosis, particularly in patients with unexplained forms of this rare disease. A diagnostic service with worldwide reach was developed for the genetic characterisation of patients that carry mutations identified by the Queens's group. It deals with approximately 100 samples per year referred for investigation for this rare disease from the UK, Europe and further afield. Proper diagnosis helps in management of patients with erythrocytosis where the problem is not mutation in one of the familiar causative genes. A pan-European web-based database has been established to collect information on long-term outcomes to inform patient management.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Oncology and Carcinogenesis

Improving diagnosis and clinical care for rare inherited diabetes syndromes

Summary of the impact

Although individually infrequent, rare diseases collectively are a major health burden, particularly for individuals who suffer with conditions that are not routinely diagnosed or have no effective care pathways. Through the work of Professor Tim Barrett, the University of Birmingham is internationally recognised for translational research in rare inherited diabetes and obesity syndromes. This has had major impacts on patient care through gene identification for devastating multi-system syndromes; development of a unique international diagnostic testing service combining molecular testing with international clinical expertise; European reference centre status for three NHS highly specialised multidisciplinary services; and leadership of the European Registry for rare diabetes syndromes. Our national and international leadership for these previously poorly-served conditions has enabled sharing of best clinical practice, including development of clinics for Wolfram syndrome across the world.

Submitting Institution

University of Birmingham

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

G: Diagnosis from gene discovery – developmental disorders of eye, brain, nerve and skeleton

Summary of the impact

Impact: Health and welfare; policy and guidelines; public engagement. The identification of >20 genes linked to human developmental and childhood degenerative disorders.

Significance: Definitive diagnosis is essential for genetic counselling, prenatal screening and postnatal management.

Beneficiaries: People with developmental disorders and their families, prospective parents, the NHS and healthcare delivery organisations; public understanding of genetic disorders.

Attribution: Researchers from UoE identified/characterised all the genes described, and their mutation in disease.

Reach: Worldwide: these developmental disorders affect thousands of people. Genetic tests established as a result of the research are provided for people from 35 countries on all continents.

Submitting Institution

University of Edinburgh

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Monogenetic Diseases

Summary of the impact

Research at the Centre for Cutaneous Research at Queen Mary has led to gene discovery and molecular diagnosis for a number of single gene skin disorders and associated syndromes including hearing loss, inflammatory bowel disease, cardiomyopathy and oesophageal cancer. It has identified GJB2 mutations (encoding Cx26) as major cause of genetic hearing loss (20-50% of all cases) and ABCA12 mutations with the (often fatal) recessive skin condition Harlequin Ichthyosis. Impacts include: 1) increased medical and scientific awareness/knowledge of the inherited basis of these conditions, 2) changes in clinical practice and molecular diagnosis, 3) improved information for patients, parents and the public.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Molecular genetic characterisation of human and animal disorders leading to improved diagnosis, prevention and treatment of inherited disorders

Summary of the impact

Research at the UCL School of Pharmacy has positively influenced healthcare in startle disease/hyperekplexia, a rare disease that affects humans and several animal species, including dogs, horses and cattle. The identification and functional characterisation of mutations in genes involved in human startle disease by researchers at the School has improved genetic diagnostics and patient care. Our research on startle disease in cattle and dogs has also led to new non- invasive diagnostic tests that have alleviated animal suffering and reduced negative economic impacts on farmers. Overall, our findings have been translated into tangible benefits for the human and animal populations affected by this disease and have changed the way in which the disease is diagnosed and treated. We have also significantly increased the awareness of this rare disorder by communicating with academics, healthcare and veterinary professionals, and the general public.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Clinical Diagnosis and Management of Xeroderma Pigmentosum and Related Disorders

Summary of the impact

Individuals with Xeroderma pigmentosum (XP) are extremely susceptible to sunlight-induced skin cancers and, in some cases, develop neurological problems. Alan Lehmann has developed a cellular diagnostic test for this disorder. This test is now conducted as an integral part of a multi-disciplinary XP specialist clinic in London, which was established as a direct result of Alan Lehmann's research in Sussex and which has led to the improved diagnosis and management of the disorder and an improved quality of life for affected individuals.

Submitting Institution

University of Sussex

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

4. Identification of MUTYH, the first recessive colorectal cancer gene, improves management of familial bowel cancer

Summary of the impact

Identification of MUTYH by researchers at Cardiff University as the first gene causing autosomal recessive colorectal cancer led to international adoption of MUTYH genetic testing in the management of familial colorectal cancer and thereby to global improvement in genetic counselling and colorectal cancer prevention. Since 2008 MUTYH gene testing has been introduced progressively and is now provided by at least 84 European state and commercial diagnostic laboratories. Commercialisation of testing in North America via a licence to Myriad Genetics Inc. generated income of approximately $5M between 2008 and 2011 and licence fees and royalties to date of £331,947. Thus we claim impacts in health and commercial benefit, the financial beneficiaries being Myriad Genetics and Cardiff University.

Submitting Institution

Cardiff University

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Oncology and Carcinogenesis

Trimethylaminuria is a genetic disorder

Summary of the impact

Research by Professor Elizabeth Shephard at the UCL Research Department of Structural and Molecular Biology has led to identification of the genetic origin of Trimethylaminuria (TMAU), commonly known as fish-odour syndrome. This has led to genetic diagnosis and genetic counselling for TMAU in the UK, Europe, USA and Canada, and the publication of guidelines for treatment and diagnosis. Shephard has engaged closely with patient groups over the years to publicise her findings. There is now an increased understanding among medical practitioners and the public that the body odour produced is due to a metabolic defect of genetic origin, and is not due to poor hygiene.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics

Filter Impact Case Studies

Download Impact Case Studies