Log in
University of Southampton research has been crucial in informing and stimulating worldwide debate on geoengineering — the possible large-scale intervention in the Earth's climate system in order to avoid dangerous climate change. Climate modellers at Southampton helped to reveal the potential extent of the fossil fuel "hangover" — the long-term damaging effects expected from anthropogenic CO2 emissions centuries or even millennia after they end. This work led Professor John Shepherd FRS to initiate and chair a Royal Society study, whose 2009 report, Geoengineering the Climate: Science, government and uncertainty, is the global benchmark document on geoengineering strategies, influencing UK and foreign government policy.
Results from climate physics research at the University of Oxford have demonstrated that targets for cumulative carbon emissions, rather than greenhouse gas concentrations, are a more effective approach to limiting future climate change. This new approach and the resulting `trillionth tonne' concept have had substantial political and economic implications. Impacts since 2009 include (a) stimulus to policy developments; (b) influence on the business decisions of Shell e.g. to invest in a $1.35bn carbon capture and storage facility; and (c) significant public and media debate with a global reach.
The US government's announcement of an increase in the `social cost of carbon' (SCC) from $24 to $38 a tonne has been made on the basis of research by Richard Tol, of the University of Sussex. Regulation based on the new SCC (a measure of the damage of releasing an additional tonne of carbon into the atmosphere) initially applies to microwave ovens, where it is anticipated to save US consumers billions on their energy bills over coming decades and prevent 38 million tonnes of CO2 emissions. From June 2013, the new SCC applies to any new or revised regulation by any branch of the US government and will eventually affect a wide range of products and investments, including cars, white goods and power plants.
Tol, who works as an adviser to the US Environmental Protection Agency (EPA), has been instrumental in helping the agency to understand the economic impacts of climate change and the methods and assumptions that underpin SCC estimates. The US government's estimates of the SCC are widely used by other decision-makers in the private sector, banks and NGOs and in other countries.
As the realities of climate change have become more widely accepted over the last decade, decision makers have requested projections of future changes and impacts. Founded in 2002, the Centre for Analysis of Time Series (CATS) has conducted research revealing how the limited fidelity of climate models reduces the relevance of cost-benefit style management in this context: actions based on ill-founded projections (including probabilistic projections) can lead to maladaptation and poor policy choice. CATS' conclusions were noted in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) report and led in turn to the toning down of the UK Climate Projections 2009 and the 2012 UK Climate Change Risk Assessment. Members of the insurance sector, energy sector, national security agencies, scientific bodies and governments have modified their approaches to climate risk management as a direct result of understanding CATS' research. Attempts to reinterpret climate model output and design computer experiments for more effective decision support have also resulted.
A novel large-area process-based crop simulation model developed at the University of Reading and published in 2004 has been used to explore how climate change may affect crop production and global food security. The results of Reading's modelling work have been used as evidence to support the case for action on climate change for international agreements and used by the UK Government to inform various areas of policy and, in particular, to help frame its position on climate change at international negotiations. The database and knowledge from this model also informed the development of Reading's innovative web-based tool that locates sites where the climate today is similar to the projected climate in another location - providing insight into potential adaptation practices for crop production in the future by linking to present-day examples. This tool has been used to inform and train farmers and policy-makers in developing countries and has supported policy implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture.
UK upland peatlands constitute the world's greatest area of blanket bog, an endangered biome, and are the UK's largest natural habitat, carbon store, and pure water resource. The multi-institutional project "Climate Change Impacts on UK Upland Soils" identified models to predict the response of blanket bog to climatic and environmental changes and drew the attention of diverse stakeholders to the challenge of conserving these peatlands in a warming climate. The results have had impact on public policy and the environment by stimulating and informing debate. Since 2011, they have been (i) used by local and national agencies such as the Forestry Commission, (ii) included in the UK Climate Change Risk Assessment, (iii) cited by the International Union for Conservation of Nature (IUCN) Commission of Enquiry on Peatlands, and (iv) used in evidence for policy making by Defra and the Scottish Parliament.
Information on the potential impacts of climate change across the world, and on the effects of policies designed to reduce emissions, is fundamental to inform the development of climate mitigation and adaptation policy. Research conducted at the Unit has been critical to the establishment of a target 80% cut in UK carbon emissions by 2050, as enforced by the Climate Change Act (2008), and provided an affirmation of the relevance of the 2f0b0C global mean temperature rise target central to national and international climate mitigation policy. Research into the global consequences of climate change, particularly for water resources and river flooding, has been used by the Department for Energy and Climate Change (DECC) to assess the impacts of un-mitigated climate change and the effects of different mitigation policy options.
Climate change is one of the defining challenges of our time. The net costs of climate change in the UK could be tens of billions of pounds per year in the 2050s, and tidal flooding alone could affect over half a million UK properties by 2100. Dr Jonathan Rougier worked with the UK Met Office (UKMO) to produce the climate scenarios for the UK Climate Impacts Programme (UKCIP) 2009 report (UKCP09). His research and advice (funded as a UKMO External Expert) was critical in a key innovation in the UKCP09: a comprehensive uncertainty assessment. A Director of the UKCIP writes "The UKMO team with Dr Rougier [have] put the UK at the leading edge of the science and service aspects of providing climate information for users" [b].
The UKCP09 formed the basis of the UK Climate Change Risk Assessment and the recommendations of the UK National Adaptation Programme, which was submitted to Parliament as part of the Government's obligations under the Climate Change Act. The UKCP09 has been used for the assessment of the impact of climate change by hundreds of organisations, including agencies and non-governmental organisations (NGOs), utilities companies, consultancies, and County Councils and Local Authorities.
The Mars Climate Database (MCD), based on research at the University of Oxford, has been used to inform the entry, descent, landing and operation of past and future Mars landers. The MCD has been provided to 112 users, including NASA, the European Space Agency (ESA) and Astrium. The MCD has directly contributed to the successful landing and operation of NASA's Curiosity Mars Rover, and ESA have required Astrium, lead contractor for the ExoMars mission, to use it for the design of components and systems. The impacts of the MCD include (1) contributions to preventing failures of billion-dollar space missions and thus financial savings for space agencies and (2) enabling viability studies of spacecraft designs by industrial contractors.
Research at the University of Exeter identifying potential climate tipping points and developing early warning methods for them has changed the framework for climate change discussion. Concepts introduced by Professor Tim Lenton and colleagues have infiltrated into climate change discussions among policy-makers, economists, business leaders, the media, and international social welfare organisations. Thorough analyses of abrupt, high impact, and uncertain probability events, including estimates of their proximity, has informed government debate and influenced policy around the world. It has also prompted the insurance and reinsurance industry to reconsider their risk portfolios and take into account tipping point events.